【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線(xiàn)AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線(xiàn)段PD上是否存在一點(diǎn)N,使得直線(xiàn)BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),直線(xiàn)BN與平面PCD所成角α的正弦值等于。
【解析】
試題分析:(1)由面面垂直的性質(zhì)定理可得平面,所以直線(xiàn),兩兩垂直,以為原點(diǎn),分別以為軸,軸,軸建立空間直角坐標(biāo)系, 為平面的一個(gè)法向量,利用向量垂直的性質(zhì)列方程組求出平面的一個(gè)法向量,利用空間向量夾角余弦公式可得結(jié)果;(2)設(shè),.由(1)知,平面的一個(gè)法向量為,利用空間向量夾角余弦公式列方程求解即可.
試題解析:(1)因?yàn)槠矫?/span>ABCD⊥平面ABEP,平面ABCD∩平面ABEPAB,BP⊥AB,
所以BP⊥平面ABCD,又AB⊥BC,所以直線(xiàn)BA,BP,BC兩兩垂直,
以B為原點(diǎn),分別以BA,BP,BC為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,則P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),
因?yàn)?/span>BC⊥平面ABPE,所以為平面ABPE的一個(gè)法向量,
,設(shè)平面PCD的一個(gè)法向量為,
則 即令,則,故,
設(shè)平面PCD與平面ABPE所成的二面角為,則,
顯然,所以平面PCD與平面ABPE所成二面角的余弦值.
(2)設(shè)線(xiàn)段PD上存在一點(diǎn)N,使得直線(xiàn)BN與平面PCD所成角α的正弦值等于.
設(shè),.
由(1)知,平面PCD的一個(gè)法向量為,
所以,
即,解得或(舍去).
當(dāng)點(diǎn)N與點(diǎn)D重合時(shí),直線(xiàn)BN與平面PCD所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某國(guó)際性會(huì)議紀(jì)念章的一特許專(zhuān)營(yíng)店銷(xiāo)售紀(jì)念章,每枚進(jìn)價(jià)為5元,同時(shí)每銷(xiāo)售一枚這種紀(jì)念章還需向該會(huì)議的組織委員會(huì)交特許經(jīng)營(yíng)管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價(jià)格銷(xiāo)售時(shí),該店一年可銷(xiāo)售2000枚,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每枚紀(jì)念章的銷(xiāo)售價(jià)格在每枚20元的基礎(chǔ)上,每減少一元?jiǎng)t增加銷(xiāo)售400枚,而每增加一元?jiǎng)t減少銷(xiāo)售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷(xiāo)售價(jià)格為元(每枚的銷(xiāo)售價(jià)格應(yīng)為正整數(shù)).
(1)寫(xiě)出該特許專(zhuān)營(yíng)店一年內(nèi)銷(xiāo)售這種紀(jì)念章所獲得的利潤(rùn)(元)與每枚紀(jì)念章的銷(xiāo)售價(jià)格的函數(shù)關(guān)系式;
(2)當(dāng)每枚紀(jì)念章銷(xiāo)售價(jià)格為多少元時(shí),該特許專(zhuān)營(yíng)店一年內(nèi)利潤(rùn)(元)最大,并求出這個(gè)最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體中,、分別為和的中點(diǎn).
(1)求證:平面;
(2)求直線(xiàn)與面所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)滿(mǎn)足(為常數(shù)),且=3.
(1)求實(shí)數(shù)的值,并求出函數(shù)的解析式;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn))處的切線(xiàn)方程是.
(I)求的值及函數(shù)的最大值
(Ⅱ)若實(shí)數(shù)滿(mǎn)足.
()證明:;
()若,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱(chēng)為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過(guò)程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無(wú)限精細(xì)的結(jié)構(gòu)。也就是說(shuō),在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 過(guò)點(diǎn),且兩個(gè)焦點(diǎn)的坐標(biāo)分別為, .
(1)求的方程;
(2)若, , 為上的三個(gè)不同的點(diǎn), 為坐標(biāo)原點(diǎn),且,求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解人們對(duì)“2019年3月在北京召開(kāi)的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:
年齡 | 關(guān)注度非常高的人數(shù) |
15 | |
5 | |
15 | |
23 | |
17 |
(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);
(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?
(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.
45歲以下 | 45歲以上 | 總計(jì) | |
非常髙 | |||
一般 | |||
總計(jì) |
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,試討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)在(2)的條件下,若有兩個(gè)零點(diǎn),,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com