【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊分別為a,b,c,且c<a,已知 =﹣2,tanB=2 ,b=3.
(1)求a和c的值;
(2)求sin(B﹣C)的值.
【答案】
(1)解:∵ =﹣2,
∴ =2,
∴cacosB=2,
∵tanB=2 ,
∴cosB= = ,
∴ac=2
在△ABC中,由余弦定理得:b2=a2+c2﹣2accosB,
即a2+c2=13,
∴a=2,c=3,或a=3,c=2,
∵a>c,
∴a=3,c=2
(2)解:在△ABC中,sinB=cosBtanB= ,
由正弦定理得sinC= = = ,
∵a=b>c,
∴C為銳角,
∴cosC= = ,
∴sin(B﹣C)=sinBcosC﹣cosBsinC= × + × =
【解析】(1)由tanB=2 得cosB,由知 ﹣2得accosB=2,解得ac,由余弦定理及a>c,即可解得a,c的值.(2)由(Ⅰ)可求sinB,由正弦定理可求sinC,cosC,利用兩角差的正弦函數(shù)公式即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(α>b>0)的右焦點(diǎn)到直線x﹣y+3 =0的距離為5,且橢圓的一個(gè)長(zhǎng)軸端點(diǎn)與一個(gè)短軸端點(diǎn)間的距離為 .
(1)求橢圓C的方程;
(2)在x軸上是否存在點(diǎn)Q,使得過Q的直線與橢圓C交于A、B兩點(diǎn),且滿足 + 為定值?若存在,請(qǐng)求出定值,并求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過原點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,射線交橢圓于點(diǎn),交直線于點(diǎn).
(Ⅰ)求的最小值;
(Ⅱ)若,
求證:直線過定點(diǎn);
(ii)試問點(diǎn)能否關(guān)于軸對(duì)稱?若能,求出此時(shí)的外接圓方程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖像與軸的交點(diǎn)為,在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)與軸交點(diǎn)分別為
(1)求的解析式;
(2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變),再將所得圖像沿軸正方向平移個(gè)單位,得到函數(shù)的圖像,求的解析式;
(3)在(2)的條件下求函數(shù)在上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)業(yè)余足球運(yùn)動(dòng)員共有15000人,其中男運(yùn)動(dòng)員9000人,女運(yùn)動(dòng)員6000人,為調(diào)查該地區(qū)業(yè)余足球運(yùn)動(dòng)員每周平均踢足球占用時(shí)間的情況,采用分層抽樣的方法,收集300位業(yè)務(wù)足球運(yùn)動(dòng)員每周平均踢足球占用時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))
得到業(yè)余足球運(yùn)動(dòng)員每周平均踢足球所占用時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務(wù)運(yùn)動(dòng)員的每周平均踢足球時(shí)間所占用時(shí)間超過4小時(shí)”
定義為“熱愛足球”.
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1)應(yīng)收集多少位女運(yùn)動(dòng)員樣本數(shù)據(jù)?
(2)估計(jì)該地區(qū)每周平均踢足球所占用時(shí)間超過4個(gè)小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有80位女運(yùn)動(dòng)員“熱愛足球”.請(qǐng)畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認(rèn)為“熱愛足球與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場(chǎng)品銷售收入為 萬元(前 年的純利潤(rùn)綜合=前 年的 總收入-前 年的總支出-投資額 萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.
【答案】(1) 從第 開始盈利(2) 該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬元
【解析】試題分析:(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2)根據(jù)公式得到,由均值不等式得到函數(shù)最值.
解析:
由題意可知前 年的純利潤(rùn)總和
(1)由 ,即 ,解得
由 知,從第 開始盈利.
(2)年平均純利潤(rùn)
因?yàn)?/span> ,即
所以
當(dāng)且僅當(dāng) ,即 時(shí)等號(hào)成立.
年平均純利潤(rùn)最大值為 萬元,
故該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬元.
【題型】解答題
【結(jié)束】
21
【題目】已知數(shù)列 的前 項(xiàng)和為 ,并且滿足 , .
(1)求數(shù)列 通項(xiàng)公式;
(2)設(shè) 為數(shù)列 的前 項(xiàng)和,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x﹣a|+|x+b|+c的最小值為1.
(1)求a+b+c的值;
(2)求證:a2+b2+c2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為銳角三角形,命題p:不等式logcosC >0恒成立,命題q:不等式logcosC >0恒成立,則復(fù)合命題p∨q、p∧q、¬p中,真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com