【題目】某地區(qū)業(yè)余足球運(yùn)動員共有15000人,其中男運(yùn)動員9000人,女運(yùn)動員6000人,為調(diào)查該地區(qū)業(yè)余足球運(yùn)動員每周平均踢足球占用時間的情況,采用分層抽樣的方法,收集300位業(yè)務(wù)足球運(yùn)動員每周平均踢足球占用時間的樣本數(shù)據(jù)(單位:小時)
得到業(yè)余足球運(yùn)動員每周平均踢足球所占用時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
將“業(yè)務(wù)運(yùn)動員的每周平均踢足球時間所占用時間超過4小時”
定義為“熱愛足球”.
附:K2=

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(1)應(yīng)收集多少位女運(yùn)動員樣本數(shù)據(jù)?
(2)估計該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.
(3)在樣本數(shù)據(jù)中,有80位女運(yùn)動員“熱愛足球”.請畫出“熱愛足球與性別”列聯(lián)表,并判斷是否有99%的把握認(rèn)為“熱愛足球與性別有關(guān)”.

【答案】
(1)解: ,

∴應(yīng)收集120位女運(yùn)動員樣本數(shù)據(jù)


(2)解:由頻率分布直方圖得1﹣2×(0.100+0.025)=0.75,

∴該地區(qū)每周平均踢足球所占用時間超過4個小時的概率的估計值為0.75


(3)解:由(2)知,300位足球運(yùn)動中有300×0.75=225人的每周平均踢足球時間超過4小時,

75人的每周平均踢足球占用時間超過4小時,

∴熱愛足球與性別列聯(lián)表如下,

男運(yùn)動員

女運(yùn)動員

總計

不熱愛足球

35

40

75

熱愛足球

145

80

225

總計

180

120

300

結(jié)合列聯(lián)表可算得 =

∴有99%的把握認(rèn)為“熱愛足球與性別有關(guān)”


【解析】(1)利用分層抽樣中每層所抽取的比例數(shù)相等求得答案;(2)由頻率分布直方圖結(jié)合概率和為1求得該地區(qū)每周平均踢足球所占用時間超過4個小時的概率.(3)由題意列出2×2列聯(lián)表,計算出k2的值,結(jié)合附表得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在半徑為R的圓桌上擺放同樣大小的半徑為r的硬幣.要求硬幣不準(zhǔn)露出圓桌面邊緣,并且所擺硬幣彼此不能重疊.當(dāng)擺放n枚硬幣之后,圓桌上就不能再多擺放一枚這種硬幣了.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過圓O外一點(diǎn)P作圓的切線PC,切點(diǎn)為C,割線PAB、割線PEF分別交圓O于A與B、E與F.已知PB的垂直平分線DE與圓O相切.

(1)求證:DE∥BF;
(2)若 ,DE=1,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

【答案】A

【解析】雙曲線的方程為,則漸近線方程為,漸近線方程為: ,反之當(dāng)漸近線方程為時,只需要滿足,等軸雙曲線即可.故選擇充分不必要條件.

故答案為:A.

型】單選題
結(jié)束】
10

【題目】如圖,為測量河對岸塔 的高,先在河岸上選一點(diǎn) ,使 在塔底 的正東方向上,在點(diǎn) 處測得 點(diǎn)的仰角為 ,再由點(diǎn) 沿北偏東 方向走 到位置 ,測得 ,則塔 的高是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,且c<a,已知 =﹣2,tanB=2 ,b=3.
(1)求a和c的值;
(2)求sin(B﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , .

(1)求函數(shù) 的最小正周期;

(2)若 ,且 ,求 的值.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進(jìn)而得到周期;(2)由,得到 ,由配湊角公式得到,代入值得到函數(shù)值.

解析:

(1)由題意

=

所以 的最小正周期為 ;

(2)由

又由 ,所以

,

型】解答
結(jié)束】
20

【題目】為響應(yīng)十九大報告提出的實施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場品銷售收入為 萬元(前 年的純利潤綜合=前 年的 總收入-前 年的總支出-投資額 萬元).

(1)該廠從第幾年開始盈利?

(2)該廠第幾年年平均純利潤達(dá)到最大?并求出年平均純利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形四邊形為直角梯形, ,

1)求與平面所成角的正弦值;

2)線段或其延長線上是否存在點(diǎn),使平面平面?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為,過點(diǎn)的直線與拋物線相交于兩點(diǎn),分別過點(diǎn)作拋物線的兩條切線,記相交于點(diǎn).

(1)證明:直線的斜率之積為定值;

2求證:點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的焦點(diǎn)為,離心率為

(1)求橢圓方程;

2)設(shè)過橢圓頂點(diǎn),斜率為的直線交橢圓于另一點(diǎn),交軸于點(diǎn),且 , 成等比數(shù)列,求的值.

查看答案和解析>>

同步練習(xí)冊答案