【題目】平行志愿投檔錄取模式是高考志愿的一種新方式,2008年教育部在6個省區(qū)實行平行志愿投檔錄取模式的試點改革.一年的實踐證叨,實行平行志愿投檔錄取模式,有效降低了考生志愿填報風險.平行志愿是這樣規(guī)定:在同一批次設置幾個志愿,當考生分數(shù)達到這幾個學校提檔線時,本批次的志愿依次檢索錄取.某考生根據(jù)對自己的高考分數(shù)和對往年學校錄取情況分析,從報考指南中選擇了10所學校,作出如下表格:

學校

專業(yè)

數(shù)學系

計算機系

物理系

錄取概率

0.5

0.5

0.6

0.9

0.5

0.7

0.8

0.7

0.8

0.9

1)該考生從上表中的10所學校中選擇4所學校填報,記為選擇的4所學校中報數(shù)學系專業(yè)的個數(shù),求的分布列及其期望;

2)若該考生選擇了、、4個學校在同一批次填報志愿,填報志愿表如下,如果僅以該考生對自己分析的錄取概率為依據(jù),當改變這4個志愿填報的順序時,是否改變他本批次錄取的可能性?請說明理由.

志愿

學校

第一志愿

第二志愿

第三志愿

第四志愿

【答案】1)詳見解析(2)不改變他本批次錄取的可能性,詳見解析

【解析】

1)根據(jù)超幾何分布的分布列和數(shù)學期望計算公式,計算出分布列和數(shù)學期望.

2)計算出該考生在本批次未被錄取的概率,由此判斷出當改變這4個志愿填報的順序時,不改變他本批次錄取的可能性.

1可能取的值為0,1,2,34,

,,,

的分布列:

0

1

2

3

4

2)選擇、、、4個學校的概率依次設為,,,.

該考生在本批次被錄取的概率為

所以,當改變這4個志愿填報的順序時,不改變他本批次錄取的可能性.

另解:該考生在本批次未被錄取的概率為

該考生在本批次被錄取的概率為

所以,當改變這4個志愿填報的順序時,不改變他本批次錄取的可能性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】有一片產(chǎn)量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質(zhì)量(均在l11kg)頻數(shù)分布表如下(單位: kg):

分組

頻數(shù)

10

15

45

20

10

以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.

1)由種植經(jīng)驗認為,種植園內(nèi)的水果質(zhì)量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請估算該種植園內(nèi)水果質(zhì)量在內(nèi)的百分比;

2)現(xiàn)在從質(zhì)量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質(zhì)量的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為元,求的分布列及數(shù)學期望.

附: ,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結論中一定正確的是( )

A. 電視機銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機的全年銷量最大

D. 電冰箱的全年銷量最大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱ABCA1B1C1中,M,M1分別為AB,A1B1中點.

1)求證:C1M1∥面A1MC;

2)若面ABC⊥面ABB1A1,△AB1B為正三角形,AB2,BC1,求四棱錐B1AA1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是由正整數(shù)組成的無窮數(shù)列.若存在常數(shù),使得任意的成立,則稱數(shù)列具有性質(zhì).

(1)分別判斷下列數(shù)列是否具有性質(zhì) (直接寫出結論)

(2)若數(shù)列滿足,求證:“數(shù)列具有性質(zhì)數(shù)列為常數(shù)列的充分必要條件;

(3)已知數(shù)列.若數(shù)列具有性質(zhì),求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結構如圖所示,開口為正六邊形ABCDEF,側棱AA'BB'、CC'DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個全等的菱形構成.瑞士數(shù)學家克尼格利用微積分的方法證明了蜂房的這種結構是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學方法設計自己的家園.英國數(shù)學家麥克勞林通過計算得到∠BCD′=109°2816'.已知一個房中BB'5AB2,tan54°4408',則此蜂房的表面積是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關系如表所示,繪制相應的散點圖,如圖所示:

年份

1

2

3

4

5

羊只數(shù)量(萬只)

1.4

0.9

0.75

0.6

0.3

草地植被指數(shù)

1.1

4.3

15.6

31.3

49.7

根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關系數(shù)為,則;③可以利用回歸直線方程,準確地得到當羊只數(shù)量為2萬只時的草場植被指數(shù);以上判斷中正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=x2+acosx

1)求函數(shù)fx)的奇偶性.并證明當|a|2時函數(shù)fx)只有一個極值點;

2)當aπ時,求fx)的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關于b的表達式,并由此求出數(shù)列的通項公式.

查看答案和解析>>

同步練習冊答案