14.設(shè)向量$\overrightarrow{a}$=(sin$\frac{π}{2}$x,cos$\frac{π}{2}$x),$\overrightarrow$=(sin$\frac{π}{2}$x,$\sqrt{3}$sin$\frac{π}{2}$x),x∈R,函數(shù)f(x)=$\overrightarrow{a}•(\overrightarrow{a}+2\overrightarrow)$,求:
(1)f(x)的最小正周期;
(2)f(x)在區(qū)間[0,1]上的最大值和最小值,以及取得最大值和最小值時x的值.

分析 (1)由平面向量的數(shù)量積運算,利用三角函數(shù)的恒等變換化簡f(x),即可求出f(x)的最小正周期;
(2)根據(jù)x∈[0,1],利用正弦函數(shù)的圖象與性質(zhì),即可求出f(x)的最值以及對應(yīng)的x的取值.

解答 解:(1)∵$\overrightarrow{a}$=(sin$\frac{π}{2}$x,cos$\frac{π}{2}$x),$\overrightarrow$=(sin$\frac{π}{2}$x,$\sqrt{3}$sin$\frac{π}{2}$x),x∈R,
∴f(x)=$\overrightarrow{a}•(\overrightarrow{a}+2\overrightarrow)$
=(sin$\frac{π}{2}$x,cos$\frac{π}{2}$x)•(3sin$\frac{π}{2}$x,cos$\frac{π}{2}$x+2$\sqrt{3}$sin$\frac{π}{2}$x)
=3sin2$\frac{π}{2}$x+(cos$\frac{π}{2}$x+2$\sqrt{3}$sin$\frac{π}{2}$x)cos$\frac{π}{2}$x
=$\sqrt{3}$sinπx-cosπx+2
=2sin(πx-$\frac{π}{6}$)+2,
∴f(x)的最小正周期為T=$\frac{2π}{π}$=2;
(2)∵x∈[0,1],∴πx-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(πx-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1];
當πx-$\frac{π}{6}$=-$\frac{π}{6}$,即x=0時,f(x)取得最小值為2×(-$\frac{1}{2}$)+2=1,
當πx-$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{2}{3}$時,f(x)取得最大值為2×1+2=4.

點評 本題考查了平面向量的數(shù)量積以及三角函數(shù)的恒等變換問題,也考查了正弦函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是$\frac{1}{3}$,那么另一組數(shù)據(jù)2x1-1,2x2-1,2x3-1,2x4-1,2x5-1的平均數(shù),方差分別是( 。
A.3,$\frac{4}{3}$B.3,$\frac{3}{2}$C.4,$\frac{4}{3}$D.4,$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.80-$\frac{20}{3}$πB.80+$\frac{20}{3}$πC.112+(2$\sqrt{29}$-4)πD.112+2$\sqrt{29}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為1,則$\frac{3}{a}$+$\frac{4}$的最小值為49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知y=f(x)為R上可導(dǎo)函數(shù),則“f′(0)=0“是“x=0是y=f(x)極值點”的必要不充分條件(填“充分不必要條件”或“必要不充分條件”或“充要條件”或“既不充分也不必要條件”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.要從已編號(1~80)的80個同學(xué)中隨機抽取5人,調(diào)查其對學(xué)校某項新制度的意見,用系統(tǒng)抽樣方法確定所選取的5名學(xué)生的編號可能是(  )
A.5,15,25,35,45B.4,19,34,49,63C.7,23,39,55,71D.17,26,35,44,53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-mx+m,m、x∈R.
(1)若關(guān)于x的不等式f(x)>0的解集為R,求m的取值范圍;
(2)若實x1,x2數(shù)滿足x1<x2,且f(x1)≠f(x2),證明:方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]至少有一個實根x0∈(x1,x2);
(3)設(shè)F(x)=f(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切線斜率為2
(1)求a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)-2x+2,求g(x)在其定義域上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α,β均為銳角,且cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,則sinβ的值為(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2\sqrt{5}}{25}$

查看答案和解析>>

同步練習(xí)冊答案