已知等比數(shù)列滿足:,公比,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列和數(shù)列的通項(xiàng)和;
(2)設(shè),證明:.
(1),;(2)詳見解析.
【解析】
試題分析:(1)利用等比數(shù)列的通項(xiàng)公式求出數(shù)列的通項(xiàng)公式,然后先令求出的值,然后在的前提下,由得到,解法一是利用構(gòu)造法得到
,構(gòu)造數(shù)列為等比數(shù)列,求出該數(shù)列的通項(xiàng)公式,從而得出的通項(xiàng)公式;解法二是在的基礎(chǔ)上得到,兩邊同除以得到, 利用累加法得到數(shù)列的通項(xiàng)公式,從而得到數(shù)列的通項(xiàng)公式;(2)先求出的以及的表達(dá)式從而利用裂項(xiàng)法求出數(shù)列的前項(xiàng)和,進(jìn)而證明相應(yīng)的不等式.
(1)解法一:由,得,,
由上式結(jié)合得,
則當(dāng)時(shí),,
,
,
,,
數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
,;
解法二:由,得,,
由上式結(jié)合得,
則當(dāng)時(shí),,
,
,
,
,,
;
(2)由得,
,
.
考點(diǎn):1.等比數(shù)列的通項(xiàng)公式;2.構(gòu)造法求數(shù)列通項(xiàng);3.裂項(xiàng)求和法
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省汕頭市高三3月高考模擬考試文科試卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,若輸出,則框圖中①處可以填入( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省梅州市高三3月總復(fù)習(xí)質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知變量x,y滿足約束條件,則z=3x+y的最大值為( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三4月第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知一棱錐的三視圖如圖2所示,其中側(cè)視圖和俯視圖都是等腰直角三角形,正視圖為直角梯形,則該棱錐的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三4月第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知命題:函數(shù)是最小正周期為的周期函數(shù),命題:函數(shù)在上單調(diào)遞減,則下列命題為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三4月第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
在中,已知,且.
(1)求角和的值;
(2)若的邊,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三4月第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知一棱錐的三視圖如圖所示,其中側(cè)視圖和俯視圖都是等腰直角三角形,正視圖為直角梯
形,正視圖為直角梯形,則該棱錐的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三3月第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
從中任取一個(gè)數(shù),從中任取一個(gè)數(shù),則使的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省惠州市高三4月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
在平面直角坐標(biāo)系下,曲線,曲線.若曲線有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com