6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,若f(x0)=1,則x0的值是10.

分析 當(dāng)x0>0時(shí),f(x0)=lgx0=1,;當(dāng)x0<0時(shí),$f({x}_{0})={{x}_{0}}^{-2}=1$.由此能求出x0的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,f(x0)=1,
∴當(dāng)x0>0時(shí),f(x0)=lgx0=1,解得x0=10;
當(dāng)x0<0時(shí),$f({x}_{0})={{x}_{0}}^{-2}=1$,解得x0=1,不成立.
綜上,x0=10.
∴x0的值是10.
故答案為:10.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ-ρ=0,直線l:$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))與曲線C交于M,N兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:?x∈R,cos2x-sinx+2≤m;q:函數(shù)$f(x)={({\frac{1}{3}})^{2{x^2}-mx+2}}$在[1,+∞)上單調(diào)遞減.
( I)若p∧q為真命題,求m的取值范圍;
( II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測(cè)試成績(jī)分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測(cè)試成績(jī)不少于60分的學(xué)生人數(shù)為( 。
A.588B.480C.450D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=2x3-6x2+11的單調(diào)減區(qū)間是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={0,1,2},B={y|y=2x,x∈A},則A∩B={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合$A=\left\{{\left|{\frac{x-2}{2x-1}>}\right.0}\right\}$,B={x|bx<1},若A∪B=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3x-1,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則滿足f[f(a)]=2f(a)的a的取值范圍是(  )
A.[$\frac{2}{3}$,1]B.[0,1]C.[$\frac{2}{3}$,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,矩形ABCD 中,AD⊥平面ABE,AE=FB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC,BD交于G點(diǎn)
(1)求證:AE∥平面BFD
(2)求證:AE⊥平面BCE
(3)求三棱柱C-BGF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案