已知m∈R,設(shè)命題P:?x∈{x|-2<x<2},使等式x2-2x-m=0成立;命題Q:函數(shù)f(x)=3x2+2mx+m+
4
3
有兩個(gè)不同的零點(diǎn).“P∨Q”為真命題,“P∧Q”為假命題,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題先對(duì)命題p、q進(jìn)行化簡轉(zhuǎn)化,再將條件“P∨Q”為真命題,“P∧Q”為假命題,轉(zhuǎn)化為命題p、q中一個(gè)命題為真,另一個(gè)命題為假,得到關(guān)于m的不等式,解不等式,得到本題結(jié)論.
解答: 解:命題p等價(jià)于方程x2-2x-m=0在區(qū)間(-2,2)上有解.
記g(x)=x2-2x-m,
g(1)≤0
g(-2)>0
,
-m-1≤0
8-m>0
,
∴-1≤m<8.
命題q:由方程3x2+2mx+m+
4
3
=0
的根的判別式
△=4m2-12(m+
4
3
)
=4m2-12m-16>0,
得m<-1或m>4.
∵“P∨Q”為真命題,“P∧Q”為假命題,
∴命題p、q中,一個(gè)為真,另一個(gè)為假.
∴當(dāng)命題p真q假時(shí),m<-1或m≥8,
當(dāng)命題p假q真時(shí),-1≤m≤4.
∴m≤4或m≥8.
實(shí)數(shù)m的取值范圍是(-∞,4]∪[8,+∞).
點(diǎn)評(píng):本題考查了一元二次方程的根的存在性、“或”命題和“且”命題的真假判斷,本題計(jì)算量較大,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l的法向量
n
=(1 , 2)
,且經(jīng)過點(diǎn)M(0,1),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)求值:sin
25π
6
+cos
3
+tan(-
4
);
(Ⅱ)已知log23=a,log37=b,試用a,b表示log1456.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=3,an+1=
an-1
an+1
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)之積,則T2010=( 。
A、
3
2
B、-
1
6
C、
2
3
D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用1,2,3,4,5這五個(gè)數(shù)字組成數(shù)字不重復(fù)的五位數(shù),由這些五位數(shù)構(gòu)成集合M,我們把千位數(shù)字比萬位數(shù)字和百位數(shù)字都小,且十位數(shù)字比百位數(shù)字和個(gè)位數(shù)字都小的五位數(shù)稱為“五位凹數(shù)”例如:21435就是一個(gè)五位凹數(shù).
(1)求從集合M中隨機(jī)抽取一個(gè)數(shù)恰是“五位凹數(shù)”的概率.
(2)設(shè)集合M中的“五位凹數(shù)”的十位數(shù)字為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(0)=1,f(n)=2nf(n-1)(n∈N+),則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=2,BC=4,已知點(diǎn)O是△ABC內(nèi)一點(diǎn),且滿足
OA
+2
OB
+3
OC
=
0
,則
OC
•(
BA
+
BC
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2
1
2
(ωx+φ)-2
3
sin
1
2
(ωx+φ)cos
1
2
(ωx+φ)(ω>0.0<φ<
π
2
)其圖象的兩個(gè)相鄰對(duì)稱中心的距離為
π
2
,且過點(diǎn)(-
π
6
,2).
(Ⅰ)函數(shù)f(x)的達(dá)式;
(Ⅱ)若f(
α
2
-
π
6
)=
1
2
,α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩集合M={x∈R|0≤x≤8},N={y∈R|0≤y≤5}.下列的對(duì)應(yīng)關(guān)系中,是M到N的映射的是( 。
A、f:x→y=2
x
B、f:x→y=
2
3
x
C、f:x→y=2x-1
D、f:x→y=
3x

查看答案和解析>>

同步練習(xí)冊(cè)答案