【題目】如圖,長方體ABCDA1B1C1D1中,ABAD1,AA12,點(diǎn)PDD1的中點(diǎn),點(diǎn)MBB1的中點(diǎn).

1)求證:PB1⊥平面PAC;

2)求直線CM與平面PAC所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)先證明、即可;(2)建立空間直角坐標(biāo)系,分別求出及平面的法向量的坐標(biāo),然后由公式計(jì)算即可.

1)證明:在長方體ABCDA1B1C1D1中,由ABAD1,AA12,

點(diǎn)PDD1的中點(diǎn),點(diǎn)MBB1的中點(diǎn),得PC22PB123,B1C25,

PC2+PB12B1C2,則PB1PC

同理PB1PA,又PAPCP

∴直線PB1⊥平面PAC;

2)解:以D為坐標(biāo)原點(diǎn),分別以DC,DADD1所在直線為x,y,z軸建立空間直角坐標(biāo)系,

由已知可得,C1,0,0),M11,1),A01,0),P0,0,1),

,,

設(shè)平面CAP的一個(gè)法向量為,

,取z1,得

設(shè)直線CM與平面PAC所成角為θ,

∴直線CM與平面PAC所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的極值;

2)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式:x2-(a+)x+1≤0 (a∈R,且a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù): ,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

女同學(xué)

總計(jì)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時(shí)間在分鐘,乙每次解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店為了解氣溫對(duì)某產(chǎn)品銷售量的影響,隨機(jī)記錄了該商店月份中天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:

(1)求的回歸方程

(2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地月份某天的最低氣溫為,請(qǐng)用(1)中的回歸方程預(yù)測該商店當(dāng)日的銷售量.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

若關(guān)于x的方程有唯一解,且,,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線與直線垂直,求實(shí)數(shù)的值;

2)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),f(x)=-mx2-m+ln(1-m),(m<1)

(Ⅰ)當(dāng)m=時(shí),求f(x)的極值;

(Ⅱ)證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案