【題目】已知函數, .
(1)討論函數的單調性;
(2)若在定義域內恒成立,求實數的取值范圍.
【答案】(1)見解析(2)或.
【解析】試題分析:
(1)由題意可得: .分類討論:
①若時,, 在上是增函數.
②若 時,則在上是增函數.在上是減函數.
(2)不等式恒成立,則:①當, 同時恒成立時,
②當, 同時恒成立時,
③當時,∵為增函數, 為減函數,
綜上: 或.
試題解析:
解:(1)
.
①若時,,則在上是增函數.
②若
在上是減函數.
(2)若在定義域內恒成立,考慮以下情形:
①當, 同時恒成立時,
由, 恒成立.
得: .
∵由, 恒成立得: .∴.
②當, 同時恒成立時, 不存在;
③當時,∵為增函數, 為減函數,
若它們有共同零點,則恒成立.
由, ,聯立方程組解得: .
綜上: 或.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內,當x= 時,f(x)取得最大值3;當x= 時,f(x)取得最小值﹣3.
(1)求函數f(x)的解析式;
(2)求函數f(x)的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉成.若為線段的中點,則在翻折過程中:
①是定值;②點在某個球面上運動;
③存在某個位置,使;④存在某個位置,使平面.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“隨機模擬方法”計算曲線與直線, 所圍成的曲邊三角形的面積時,用計算機分別產生了10個在區(qū)間上的均勻隨機數和10個區(qū)間上的均勻隨機數(, ),其數據如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個曲邊三角形面積的一個近似值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,其前n項和為Sn , 且滿足a1=1,an+1=2 +1,n∈N* .
(1)求a2的值;
(2)求數列{an}的通項公式;
(3)是否存在正整數k,使ak , S2k﹣1 , a4k成等比數列?若存在,求k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,A、B、C三點滿足 = + .
(1)求證:A、B、C三點共線;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)= +(2m+ )| |+m2的最小值為5,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數f(x)零點個數;
(2)若對x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)= 必有一個實數根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件
①當x=﹣1時,函數f(x)有最小值0;
②對任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為, 為的中點, 為線段上的動點,過點, , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號).
①當時, 為四邊形;②當時, 為等腰梯形;
③當時, 與的交點滿足;
④當時, 為五邊形;
⑤當時, 的面積為.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com