11.若函數(shù)f(x)滿足關系式f(x)+2f(1-x)=-$\frac{3}{x}$,則f(2)的值為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{5}{2}$D.$\frac{5}{2}$

分析 利用賦值法求解即可.

解答 解:∵f(x)+2f(1-x)=-$\frac{3}{x}$,
令x=2,則有f(2)+2f(-1)=-$\frac{3}{2}$….①
令x=-1,則有f(-1)+2f(2)=3…②
由①②解得f(2)=$\frac{5}{2}$,
故選D.

點評 本題考查了賦值法的運用和計算.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,四面體ABCD中,O、E分別是BD、BC的中點,底面BCD是正三角形,AC=BD=2,AB=AD=$\sqrt{2}$.
(1)求異面直線AB與CD所成角的余弦值;
(2)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當a=1時,求f(x)≤3的解集;
(2)當x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若不等式x2-2x+a>0恒成立,則a的取值范圍是( 。
A.a<0B.a<1C.a>0D.a>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)經(jīng)過原點且傾斜角為30°的直線l與雙曲線右支交于點A,且△OAF是以AF為底邊的等腰三角形,求雙曲線的離心率e的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知一次函數(shù)f(x)在R上單調遞增,當x∈[0,3]時,值域為[1,4].
(1)求函數(shù)f(x)的解析式;
(2)當x∈[-1,8]時,求函數(shù)$g(x)=2x-\sqrt{f(x)}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知 a,b,c是兩兩不等的實數(shù),點 P(b,b+c),點Q(a,c+a),則直線 PQ的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中哪個與函數(shù)y=x相等( 。
A.y=($\sqrt{x}$)2B.f(x)=$\frac{{x}^{2}}{x}$C.y=|x|D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.有下列四個命題,其中假命題是( 。
A.?x0>0,x02≤x0B.?x∈R,3x>0
C.?x0∈R,sinx0+cosx0=2D.?x0∈R,lgx0=0

查看答案和解析>>

同步練習冊答案