分析 根據(jù)題設(shè)條件,證明①和②是正確的.分別舉出反例,說(shuō)明③和④都是錯(cuò)誤的;
解答 解:在①中:在[1,3]上,f(2)=f($\frac{x+(4-x)}{2}$)≤$\frac{1}{2}$[f(x)+f(4-x)],
∴$\left\{\begin{array}{l}{f(x)+f(4-x)≥2}\\{f(x)≤f(x)_{max}=f(2)=1}\\{f(4-x)≤f(x)_{max}=f(2)=1}\end{array}\right.$,
故f(x)=1,
∴對(duì)任意的x1,x2∈[1,3],f(x)=1,
故①成立;
在②中,對(duì)任意x1,x2,x3,x4∈[1,3],
有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)=f($\frac{\frac{1}{2}({x}_{1}+{x}_{2})+\frac{1}{2}({x}_{3}+{x}_{4})}{2}$)≤$\frac{1}{2}$[f($\frac{{x}_{1}+{x}_{2}}{2}$)+f($\frac{{x}_{3}+{x}_{4}}{2}$ )]
≤$\frac{1}{2}$[$\frac{1}{2}$(f(x1 )+f(x2))+$\frac{1}{2}$(f(x3)+f(x4))]
=$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)],
∴f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)],
故②成立.
在③中,反例:f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},1≤x<3}\\{2,x=3}\end{array}\right.$在[1,3]上滿足性質(zhì)P,
但f(x)在[1,3]上不是連續(xù)函數(shù),故③不成立;
在④中,反例:f(x)=-x在[1,3]上滿足性質(zhì)P,但f(x2)=-x2在[1,$\sqrt{3}$]上不滿足性質(zhì)P,
故④不成立;
故真命題的序號(hào)為:①②,
故答案為:①②
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)為函數(shù)定義的理解,說(shuō)明一個(gè)結(jié)論錯(cuò)誤時(shí),只需舉出反例即可.說(shuō)明一個(gè)結(jié)論正確時(shí),要證明對(duì)所有的情況都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
健康 | 非健康 | 總計(jì) | |
經(jīng)常參加體育鍛煉 | p | ||
不參加體育鍛煉 | q | 100 | |
總計(jì) | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com