3.通過隨機詢問110名性別不同的中學生是否愛好運動,得到如下的列聯(lián)表:
總計
愛好402060
不愛好203050
總計6050110
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$得,K2=$\frac{110(40×30-20×20)^2}{60×50×60×50}$≈7.8
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好運動與性別有關”
B.有99%以上的把握認為“愛好運動與性別有關”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好運動與性別無關”
D.有99%以上的把握認為“愛好運動與性別無關”

分析 通過所給的觀測值,同臨界值表中的數(shù)據(jù)進行比較,發(fā)現(xiàn)7.822>6.635,得到結(jié)論.

解答 解:∵由一個2×2列聯(lián)表中的數(shù)據(jù)計算得K2的觀測值k≈7.822,
則7.822>6.635,
∴有99%以上的把握認為“愛好該項運動與性別有關”,
故選:B.

點評 本題考查獨立性檢驗,考查判斷兩個變量之間有沒有關系,一般題目需要自己做出觀測值,再拿著觀測值同臨界值進行比較,得到結(jié)論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.A、B、O是拋物線E:y2=2px(p>0)上不同三點,其中O是坐標原點,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,直線AB交x軸于C點,D是線段OC的中點,以E上一點M為圓心、以|MD|為半徑的圓被y軸截得的弦長為d,下列結(jié)論正確的是( 。
A.d>|OC|>2pB.d<|OC|<2pC.d=|OC|=2pD.d<|OC|=2p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.用a,b,c分別表示△ABC的三個內(nèi)角A,B,C所對邊的邊長,R表示△ABC的外接圓半徑.
(1)R=2,a=2,B=45°,求AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數(shù)a,b,R,其中b≤a,問a,b,R滿足怎樣的關系時,以a,b為邊長,R為外接圓半徑的△ABC不存在,存在一個或存在兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a,b,R表示c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知拋物線y2=2px(p>0)的焦點為F,直線y=-3與拋物線交于點M,|MF|=5,則拋物線的標準方程是( 。
A.y2=2xB.y2=18xC.y2=xD.y2=2x或y2=18x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知點A是拋物線y2=4x的對稱軸與準線的交點,點B是其焦點,點P在該拋物線上,且滿足|PA|=m|PB|,當m取得最大值時,點P恰在以A,B為焦點的雙曲線上,則雙曲線的實軸長為( 。
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.$\sqrt{2}$+1D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.300°用弧度制可表示為$\frac{5π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)y=cos(sinx),則下列結(jié)論正確的是( 。
A.它是奇函數(shù)B.值域為[cos1,1]C.它不是周期函數(shù)D.定義域為[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.有A,B,C三個城市,上午從A城去B城有5班汽車,2班火車,都能在12:00前到達B城,下午從B城去C城有3班汽車,2班輪船.某人上午從A城出發(fā)去B城,要求12:00前到達,然后他下午去C城,問有多少種不同的走法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),M,N是雙曲線上關于原點對稱的兩點,P是雙曲線上的動點,直線PM,PN的斜率分別為k1,k2(k1•k2≠0),若|k1|+|k2|的最小值為1,則雙曲線的離心率為$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

同步練習冊答案