精英家教網 > 高中數學 > 題目詳情

【題目】已知直線l的參數方程為 (t為參數),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,圓C的極坐標方程為
(1)求圓C的直角坐標方程;
(2)若P(x,y)是直線l與圓面 的公共點,求 的取值范圍.

【答案】
(1)解:因為圓C的極坐標方程為 ,

所以

所以圓C的直角坐標方程


(2)解:由圓C的方程 ,可得 ,

所以圓C的圓心是 ,半徑是2,

,代入 ,得u=4﹣t,

又直線l過 ,圓C的半徑是2,所以﹣2≤t≤2,

的取值范圍是[2,6]


【解析】(Ⅰ)圓C的極坐標方程轉化為 ,由此能求出圓C的直角坐標方程.(Ⅱ)由圓C的方程轉化為 ,得到圓C的圓心是 ,半徑是2,將 ,代入 ,得u=4﹣t,由此能求出 的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知f(x)=e2x+ln(x+a).
(1)當a=1時,①求f(x)在(0,1)處的切線方程;②當x≥0時,求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x,y∈R.
(Ⅰ)若x,y滿足 , ,求證: ;
(Ⅱ)求證:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據空氣質量指數API(為整數)的不同,可將空氣質量分級如下表:

現對某城市30天的空氣質量進行監(jiān)測,獲得30API數據(每個數據均不同),統(tǒng)計繪得頻率分布直方圖如圖.

(1)請由頻率分布直方圖來估計這30API 的平均值;

(2)若從獲得的空氣質量優(yōu)空氣質量中重度污染的數據中隨機選取個數據進行復查,求空氣質量優(yōu)空氣質量中重度污染數據恰均被選中的概率;

(3)假如企業(yè)每天由空氣污染造成的經濟損失S(單位:元)與空氣質量指數API (記為)的關系式為,

若將頻率視為概率,在本年內隨機抽取一天,試估計這天的經濟損失S不超過600元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】朱載堉(1536~1611),是中國明代一位杰出的音樂家、數學家和天文歷算家,他的著作《律學新說》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一組音(八度)分成十二個半音音程的律制,各相鄰兩律之間的頻率之比完全相等,亦稱“十二等程律”.即一個八度13個音,相鄰兩個音之間的頻率之比相等,且最后一個音是最初那個音的頻率的2倍.設第三個音的頻率為,第七個音的頻率為,則

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點.

(1)求證:

(2)求三棱錐的體積;

(3)探究在上是否存在點,使得平面,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C1與圓C2相交于A、B兩點,

(1)求公共弦AB所在的直線方程;

(2)求圓心在直線上,且經過A、B兩點的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,橢圓過點,直線軸于,且, 為坐標原點.

1)求橢圓的方程;

2)設是橢圓的上頂點,過點分別作直線交橢圓兩點,設這兩條直線的斜率分別為,且,證明:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求數列{ }的前n項和Tn

查看答案和解析>>

同步練習冊答案