6.若a,b∈R,且滿足條件(a+1)2+(b-1)2<1,則函數(shù)y=log(a+b)x是增函數(shù)的概率是$\frac{1}{4}$-$\frac{1}{2π}$.

分析 畫出滿足條件的平面區(qū)域,結(jié)合圖象求出概率即可.

解答 解:由已知(a+1)2+(b-1)2<1,
函數(shù)y=log(a+b)x是增函數(shù),滿足a+b>1,
如圖示:

故概率為:$\frac{\frac{π{×1}^{2}}{4}-\frac{1}{2}×1×1}{π{×1}^{2}}$=$\frac{1}{4}$-$\frac{1}{2π}$,
故答案為:$\frac{1}{4}$-$\frac{1}{2π}$.

點(diǎn)評 本題考查了幾何概型問題,考查數(shù)形結(jié)合,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知θ為鈍角,且cos($\frac{π}{4}$-θ)cos($\frac{π}{4}$+θ)=$\frac{1}{8}$.求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算不定積分∫(-2cosx+tanx•secx-$\frac{4}{1+{x}^{2}}$)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)不等式組$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,點(diǎn)A(2,0),點(diǎn)B(1,0),在區(qū)域D內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M滿足|MA|≥$\sqrt{2}$|MB|的概率是( 。
A.$\frac{5π}{16}$B.$\frac{3π}{16}$C.$\frac{3π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在區(qū)間[0,10]內(nèi)隨機(jī)取出兩個(gè)數(shù),則這兩個(gè)數(shù)的平方和在區(qū)間[0,10]內(nèi)的概率為( 。
A.$\frac{π}{40}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{1}{10}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.甲、乙兩人射擊同一目標(biāo),甲、乙擊中目標(biāo)的概率分別為0.6,0.3,兩人各射擊一次,都擊中目標(biāo)的概率是0.18目標(biāo)被擊中的概率為0.72恰有一人擊中的概率為0.54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“對任意x∈(1,+∞),都有x3>x${\;}^{\frac{1}{3}}$”的否定是( 。
A.存在x0∈(-∞,1],使x${\;}_{0}^{3}$<${x}_{0}^{\frac{1}{3}}$B.存在x0∈(1,+∞),使x${\;}_{0}^{3}$<${x}_{0}^{\frac{1}{3}}$
C.存在x0∈(-∞,1],使x${\;}_{0}^{3}$≤${x}_{0}^{\frac{1}{3}}$D.存在x0∈(1,+∞),使x${\;}_{0}^{3}$≤${x}_{0}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2x+log2x+b在區(qū)間($\frac{1}{2}$,4)上有零點(diǎn),則實(shí)數(shù)b的取值范圍是(  )
A.(-10,0)B.(-8,1)C.(0,10)D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=sin(2x+$\frac{π}{4}$)在一個(gè)周期內(nèi)的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案