6.函數(shù)f(x)=12x-x3在區(qū)間[-3,3]上的最大值為(  )
A.-16B.-9C.9D.16

分析 求出函數(shù)在該區(qū)間上的極值,函數(shù)在端點(diǎn)處的函數(shù)值,其中最大的即為最大值.

解答 解:由f′(x)=12-3x2=0,得x=-2或x=2,
又f(-3)=-9,f(-2)=-16,f(2)=16,f(3)=9.
所以函數(shù)f(x)在區(qū)間[-3,3]上的最大值是16.
故選:D.

點(diǎn)評(píng) 本題考查應(yīng)用導(dǎo)數(shù)求函數(shù)最值,連續(xù)函數(shù)在閉區(qū)間上必存在最大值、最小值,只需求出極值、端點(diǎn)值進(jìn)行比較即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某教師有相同的語(yǔ)文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈(zèng)送給4為學(xué)生,每位學(xué)生1本,則不同的贈(zèng)送方法共有( 。
A.15種B.20種C.48種D.60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知P點(diǎn)的柱坐標(biāo)是(2,$\frac{π}{4}$,1),點(diǎn)Q的球面坐標(biāo)為(1,$\frac{π}{2}$,$\frac{π}{4}$),根據(jù)空間坐標(biāo)系中兩點(diǎn)A(x1,y1,z1),B(x2,y2,z2)之間的距離公式|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}+({z}_{1}-{z}_{2})^{2}}$,可知P、Q之間的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{5}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=eax-1,其中a∈R,e=2.718…
(Ⅰ)討論f(x)的單調(diào)性
(Ⅱ)當(dāng)a=1時(shí),求f(x)在x=1處的切線方程
(Ⅲ)求證:當(dāng)x>1時(shí).$\frac{1}{x}$$>\frac{e}{{e}^{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列各組向量中,可以作為基底的是(  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(1,2)B.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(2,-4)
C.$\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(1,$\frac{3}{2}$)D.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$⊥($\overrightarrow{a}$$-2\overrightarrow$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.甲、乙兩個(gè)質(zhì)點(diǎn)同時(shí)從同一個(gè)位置出發(fā),沿同一直線同向而行,它們的速度曲線如圖所示(質(zhì)點(diǎn)甲、乙對(duì)應(yīng)的速度曲線分別為V、V),根據(jù)圖中信息,以下關(guān)于這兩個(gè)運(yùn)動(dòng)質(zhì)點(diǎn)結(jié)論中,正確的結(jié)論序號(hào)是:①②.
①?gòu)膖=0運(yùn)動(dòng)到t=t1,兩個(gè)質(zhì)點(diǎn)平均加速度相同;
②?t0∈[0,t1],兩個(gè)質(zhì)點(diǎn)在t=t0時(shí)有相同的加速度;
③兩物體在t=t1時(shí)相遇;
④t=t2時(shí),甲在后,乙在前.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將函數(shù)f(x)=cos2x的圖象向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)滿足|f(x1)-g(x2)|=2的x1,x2,總有|x1-x2|的最小值等于$\frac{π}{6}$,則φ=( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,化簡(jiǎn):$\frac{cosA}{sinBsinC}$+$\frac{cosB}{sinCsinA}$+$\frac{cosC}{sinAsinB}$=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案