9.方程$\frac{x^2}{3-k}+\frac{y^2}{k+3}=1$表示橢圓,則k的取值范圍是{k|-3<k<3且k≠0}.

分析 根據(jù)題意,由橢圓的標(biāo)準(zhǔn)方程的形式可得$\left\{\begin{array}{l}{3-k>0}\\{k+3>0}\\{3-k≠k+3}\end{array}\right.$,解可得k的取值范圍,即可得答案.

解答 解:根據(jù)題意,$\frac{x^2}{3-k}+\frac{y^2}{k+3}=1$表示橢圓,
必有$\left\{\begin{array}{l}{3-k>0}\\{k+3>0}\\{3-k≠k+3}\end{array}\right.$,
解可得:-3<k<3且k≠0,
即k的取值范圍是:{k|-3<k<3且k≠0};
故答案為:{k|-3<k<3且k≠0}.

點(diǎn)評(píng) 本題考查橢圓的幾何性質(zhì),注意區(qū)分二元二次方程表示橢圓與圓的方程的區(qū)別.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若集合A={2,4,6,8},B={x|x2-9x+18≤0},則A∩B=( 。
A.{2,4}B.{4,6}C.{6,8}D.{2,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)p:2x<1,q:x(x+1)<0,則p是q成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平面直角坐標(biāo)系xOy中,過點(diǎn)P(-1,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ•sinθ•tanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線C經(jīng)過點(diǎn)(2,3),它的漸近線方程為y=±$\sqrt{3}$x,橢圓C1與雙曲線C有相同的焦點(diǎn),橢圓C1的短軸長(zhǎng)與雙曲線C的實(shí)軸長(zhǎng)相等.
(1)求雙曲線C和橢圓C1的方程;
(2)經(jīng)過橢圓C1左焦點(diǎn)F的直線l與橢圓C1交于A、B兩點(diǎn),是否存在定點(diǎn)D,使得無論AB怎樣運(yùn)動(dòng),都有∠ADF=∠BDF;若存在,求出D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過左焦點(diǎn)F1作斜率為$\frac{\sqrt{3}}{3}$的直線交雙曲線的右支于點(diǎn)P,且y軸平分線段F1P,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.$\sqrt{5}$+1C.$\sqrt{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|0<x<3},N={x|x>2},則M∩(∁RN)=( 。
A.(0,2]B.[0,2)C.(2,3)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓C:x2+y2=9,過點(diǎn)P(3,1)作圓C的切線,則切線方程為x=3或4x+3y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

已知,滿足約束條件恒成立,則實(shí)數(shù)的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案