19.已知數(shù)列{an}中,a1=2,a2=4,an+1+2an-1=3an(n≥2).
(Ⅰ)證明:數(shù)列{an+1-an}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)bn=an-1,Sn=$\frac{{a}_{1}}{_{1}_{2}}$+$\frac{{a}_{2}}{_{2}_{3}}$+…+$\frac{{a}_{n}}{_{n}_{n+1}}$,若?n∈N*,使Sn≥4m2-3m成立,求實數(shù)m的取值范圍.

分析 (I)由an+1+2an-1=3an(n≥2),變形為an+1-an=2(an-an-1),a2-a1=2,利用等比數(shù)列的定義即可證明.
(II)由(I)可得:an+1-an=2n,利用“累加求和”方法、等比數(shù)列的求和公式即可得出.
(III)bn=an-1=2n-1,可得$\frac{{a}_{n}}{_{n}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$.利用“裂項求和”方法可得Sn,再利用數(shù)列的單調(diào)性、不等式的解法即可得出.

解答 (I)證明:∵an+1+2an-1=3an(n≥2),∴an+1-an=2(an-an-1),a2-a1=2,
∴數(shù)列{an+1-an}是等比數(shù)列,首項為2,公比為2.
(II)解:由(I)可得:an+1-an=2n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+2
=$\frac{{2}^{n}-1}{2-1}$+1=2n
(III)解:bn=an-1=2n-1,
∴$\frac{{a}_{n}}{_{n}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$.
∴Sn=$\frac{{a}_{1}}{_{1}_{2}}$+$\frac{{a}_{2}}{_{2}_{3}}$+…+$\frac{{a}_{n}}{_{n}_{n+1}}$=$(1-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$=1-$\frac{1}{{2}^{n+1}-1}$,
若?n∈N*,使Sn≥4m2-3m成立,
∴1>4m2-3m,解得:$-\frac{1}{4}$<m<1.
∴實數(shù)m的取值范圍是$(-\frac{1}{4},1)$.

點(diǎn)評 本題考查了遞推關(guān)系、等比數(shù)列的定義及其通項公式、“裂項求和”方法、“累加求和”方法、數(shù)列的單調(diào)性、不等式的解法,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.12本不同的書平均分成四組有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C與直線x+y=0和x+y-4=0都相切,且圓心在直線x+2y=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)直線y=kx-2與圓C相交于A,B兩點(diǎn),若|AB|≥2,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用放縮法證明$\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U={1,2,3,4,5,6,7,8},A={1,3,4,7},B={2,3,6,8},任取一個元素a∈U,則a∈(A∩∁UB)的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,△ADM是等腰直角三角形,AD⊥DM,四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.
(1)求證:AD⊥BD;
(2)若點(diǎn)E是線段DB上的一動點(diǎn),問點(diǎn)E在何位置時,三棱錐M-ADE的體積為$\frac{\sqrt{2}}{12}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.(x-1)3(2$\sqrt{x}$+1)2的展開式中x2項的系數(shù)為( 。
A.-9B.9C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)的定義域為D,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[-2b,-2a],那么y=f(x)叫做H函數(shù),若函數(shù)f(x)=(3-x)${\;}^{\frac{1}{2}}$-k是H函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若a2+b2=2c2,則$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}$=2.

查看答案和解析>>

同步練習(xí)冊答案