4.已知函數(shù)f(x)=x2+lnx-ax.
(1)當(dāng)a=3時(shí),求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在(0,1)上是增函數(shù),求a得取值范圍.

分析 (1)求單調(diào)增區(qū)間,先求導(dǎo),令導(dǎo)函數(shù)大于等于0即可;
(2)已知f(x)在區(qū)間(0,1)上是增函數(shù),即f′(x)≥0在區(qū)間(0,1)上恒成立,然后用分離參數(shù)求最值即可.

解答 解:(1)當(dāng)a=3時(shí),f(x)=x2+lnx-3x;
∴f′(x)=2x+$\frac{1}{x}$-3,由f′(x)>0得,0<x<$\frac{1}{2}$或x>1,
故所求f(x)的單調(diào)增區(qū)間為(0,$\frac{1}{2}$),(1,+∞);
(2)f′(x)=2x+$\frac{1}{x}$-a,
∵f(x)在(0,1)上是增函數(shù),
∴2x+$\frac{1}{x}$-a>0在(0,1)上恒成立,即a<2x+$\frac{1}{x}$恒成立,
∵2x+$\frac{1}{x}$≥2$\sqrt{2}$(當(dāng)且僅當(dāng)x=$\frac{\sqrt{2}}{2}$時(shí)取等號)
所以a<2$\sqrt{2}$,
當(dāng)a=2$\sqrt{2}$時(shí),易知f(x)在(0,1)上也是增函數(shù),
所以a≤2$\sqrt{2}$.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和二次函數(shù)在定區(qū)間上的最值問題,體現(xiàn)了分類討論和轉(zhuǎn)化的思想方法,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)F是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1的右焦點(diǎn)且橢圓上至少有25個(gè)不同的點(diǎn)Pi(i=1,2,3,…),|P1F|,|P2F|,|P3F|,…組成公差為d的等差數(shù)列,則實(shí)數(shù)d的取值范圍是[-$\frac{1}{12}$,0)∪(0,$\frac{1}{12}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=sinx+cosx,且f′(x)=3f(x),則tan2x的值是-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
公式和臨界值表參考第20題
生產(chǎn)能手非生產(chǎn)能手合計(jì)
25周歲以上組154560
25周歲以下組152540
合計(jì)3070100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,已知曲線C1、C2的極坐標(biāo)方程分別為$θ=0,θ=\frac{π}{3}$,曲線C3的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosα}\\{y=2sinα}\end{array}}\right.$(α為參數(shù),且$α∈[{-\frac{π}{2},\frac{π}{2}}]$),則曲線C1、C2、C3所圍成的封閉圖形的面積是$\frac{2}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數(shù)列,且B=$\frac{π}{4}$,則|cosA一cosC|的值為( 。
A.$\root{4}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\root{4}{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.集合M={x|(x-1)(x-2)<0},N={x|x<a},若M⊆N,則實(shí)數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,已知A(3,4),B(5,-12),O為坐標(biāo)原點(diǎn),∠AOB的平分線交線段AB于點(diǎn)D,則點(diǎn)D的坐標(biāo)為($\frac{32}{9},-\frac{4}{9}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足a1=2,an+1=-$\frac{1}{{a}_{n}+1}$,則a2016等于(  )
A.-$\frac{3}{2}$B.-$\frac{1}{3}$C.1D.2

查看答案和解析>>

同步練習(xí)冊答案