16.已知集合A={x|x2+px+q=0},集合B={x|x2-x+r=0},且A∩B={-1},A∪B={-1,2},求p、q、r的值.

分析 利用A∩B={-1},得出-1∈B,代入求出r,可得B,即可求出A,從而求出p,q.

解答 解:∵A∩B={-1},
∴-1∈B,
∴1+1+r=0
解得r=-2,∴B={-1,2}.
∵A∩B={-1},A∪B={-1,2},
∴A={x|x2+px+q=0}={-1},
∴p=2,q=1.

點評 本題考查交集的定義、并集的定義,考查二次方程的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.小明在研究三棱錐的時候,發(fā)現(xiàn)下面一個真命題,在三棱錐A-BCD中,已知∠BAC=α,∠CAD=β,∠DAB=γ(如圖),設(shè)二面角B-AC-D的大小為θ,則cosθ=$\frac{f(λ)-cosαcosβ}{sinαsinβ}$,其中f(γ)是一個與γ有關(guān)的代數(shù)式,請寫出符合條件的f(γ)=cosγ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集.
(2)試寫出一個含3個元素的可倒數(shù)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.試判斷下列隨機試驗否為古典概型,并說明理由.
(1)在適宜條件下“種下一粒種子,觀察它是否發(fā)芽”;
(2)從市場上出售的標準為(500±5)g的袋裝食鹽中任取一袋,測其質(zhì)量;
(3)擲一枚骰子(骰子每個面上的點數(shù)分別為1,2,3,4,5,6),觀察其朝上的點數(shù)(此骰子是由一個質(zhì)地均的正方體塑料刻成的,骰子上每個的大小一樣).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在R上的函數(shù)f(x)滿足f(x)≤5,則f(x)的最大值是(  )
A.5B.f(5)C.4.9D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若集合A=(-2,4),B=(-∞,m)∪[m+8,+∞).
(1)若m=3,全集U=A∪B,試求A∩(∁UB);
(2)若A∩B=∅,求負實數(shù)m的取值范圍;
(3)若A∩B=A,求正實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線y=x2-1與y=1+x3在x=x0處的切線互相垂直,則x0等于( 。
A.$\frac{\sqrt{36}}{6}$B.-$\frac{\root{3}{36}}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標系xOy中,若直線l:y-$\sqrt{3}$=k(x-1)不經(jīng)過第四象限,則實數(shù)k的取值范圍是[0,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.定義集合P={x|x=a•b,a∈M,b∈N},集合M={1,2},集合N={3,4,5},求集合P.

查看答案和解析>>

同步練習(xí)冊答案