1.已知A={x|-1<x<2},B={x|x<0或x>3},則A∩B=( 。
A.{x|-1<x<0}B.{x|2<x<3}C.{x|x<-1}D.{x|x>3}

分析 利用交集定義求解.

解答 解:∵A={x|-1<x<2},B={x|x<0或x>3},
∴A∩B={x|-1<x<0}.
故選:A.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知在直三棱柱ABC-A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內(nèi),且AB與投影面α所成角為θ(30°≤θ≤60°),設(shè)正視圖的面積為m,側(cè)視圖的面積為n,當(dāng)θ變化時(shí),mn的最大值是( 。
A.2$\sqrt{3}$B.4C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=2x上有兩點(diǎn)A(x1,y1),B(x2,y2)關(guān)于直線x+y=m對(duì)稱,且y1y2=-$\frac{1}{2}$,則m的值等于( 。
A.$\frac{3}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點(diǎn)H在圓D:(x-2)2+(y+3)2=32上運(yùn)動(dòng),點(diǎn)P坐標(biāo)為(-6,3),線段PH中點(diǎn)為M.
(1)求點(diǎn)M的軌跡方程;
(2)若直線y=kx與M的軌跡交于B、C兩點(diǎn),點(diǎn)N(0,t)使NB⊥NC,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.log15225+lg$\frac{1}{100}$+lg2+lg5=( 。
A.6B.-7C.14D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin2x+2$\sqrt{3}$sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[0,\frac{2π}{3}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a的最大值為1
(1)求出實(shí)數(shù)a的值,并指出當(dāng)x取何值時(shí),f(x)取最大值1
(2)若方程f(x)=m在[0,$\frac{π}{2}$]上有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍及兩個(gè)實(shí)數(shù)解的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓心在拋物線y=$\frac{1}{2}$x2上,并且和該拋物線的準(zhǔn)線及y軸都相切的圓的標(biāo)準(zhǔn)方程為(x±1)2+(y-$\frac{1}{2}$)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.點(diǎn)P在圓C1:x2+y2-8x-4y+11=0上,點(diǎn)Q在C2:x2+y2+4x+2y+1=0上,則|PQ|的最小值是3$\sqrt{5}$-3-$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案