4.已知(2-3x)9=a0+a1x+a2x2+…+a9x9,則a1+a2+…+a9=-513.

分析 分別令x=1,0,即可得出.

解答 解:令x=1,則a0+a1+a2+…+a9=-1,
令x=0,則${a_0}={2^9}$,
∴${a_1}+{a_2}+…+{a_9}=-1-{2^9}$=-513.
故答案為:-513.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N*),且a1,a2,a5是公比不等于1的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和Sn,求證:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線C:y2=4x,直線l交C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,若k1•k2=-2,則△AOB面積的最小值為( 。
A.4B.3$\sqrt{2}$C.4$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.變量x,y滿足條件$\left\{\begin{array}{l}{x-3y+4≤0}\\{3x+5y≤30}\\{x≥1}\\{\;}\end{array}\right.$,則z=2x+y的最小值為$\frac{11}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知復(fù)數(shù)z滿足(z-2i)i=1+i,則z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.假設(shè)要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋中抽取60袋牛奶進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽樣時(shí),先將800袋牛奶按000,001,…,799進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第7列開始向右讀,請你寫出抽取檢測的第5袋牛奶的編號(hào)175.
(下面摘取了隨機(jī)數(shù)表第7行至第9行)
8442 1753 3157 2455 0688  7704 7447 6721 7633 5025   8392 1206 76
6301 6378 5916 9556 6719  9810 5071 7512 8673 5807   4439 5238 79
3321 1234 2978 6456 0782  5242 0744 3815 5100 1342   9966 0279 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平行四邊形ABCD中,AB=2,AD=1,∠BAD=60°,E為線段CD上一動(dòng)點(diǎn),則$\overrightarrow{AE}•\overrightarrow{BD}$的取值范圍是[-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知兩個(gè)命題:
p:“若復(fù)數(shù)z1,z2滿足z1-z2>0,則z1>z2.”;
q:“存在唯一的一個(gè)實(shí)數(shù)對(a,b)使得a-bi=i(2+i).”
其真假情況是( 。
A.p真q假B.p假q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}的前n項(xiàng)和記為Sn,若a2+a6+a10=3,則下列各和數(shù)中可確定值的是(  )
A.S6B.S11C.S12D.S13

查看答案和解析>>

同步練習(xí)冊答案