14.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N*),且a1,a2,a5是公比不等于1的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和Sn,求證:${S_n}<\frac{1}{2}$.

分析 (1)確定a2=1+c,a5=1+4c,利用a1,a2,a5成等比數(shù)列,求c的值,即可寫出數(shù)列{an}的通項(xiàng)公式;
(2)根據(jù){bn}${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=2($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),采用裂項(xiàng)法求前n項(xiàng)和Sn=$\frac{1}{2}({1-\frac{1}{2n+1}})$<$\frac{1}{2}$.

解答 解:(1)∵an+1=an+c,a=1,c為常數(shù),
∴an=1+(n-1)c.∴a2=1=c,a5=1+4c又a1,a2,a5成等比數(shù)列,
∴(1+c)2=1+4c,解得c=0或c=2當(dāng)c=0時(shí),an+1=an不合題意,舍去.
∴c=2∴an=2n-1,
(2)an=2n-1,
∴${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴${S_n}={b_1}+{b_2}+{b_3}+…+{b_n}=\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]$,
=$\frac{1}{2}({1-\frac{1}{2n+1}})$,n∈N*,
∴${S_n}<\frac{1}{2}$.

點(diǎn)評(píng) 此題考查學(xué)生靈活運(yùn)用等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式化簡(jiǎn)求出,會(huì)確定一個(gè)數(shù)列為等比數(shù)列,考查數(shù)列遞推式的求解及相關(guān)計(jì)算,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知l是雙曲線C:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的一條漸近線,P是l上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則P到x軸的距離為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$上有一點(diǎn)A,它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,點(diǎn)F為雙曲線的右焦點(diǎn),且滿足AF⊥BF,設(shè)∠ABF=α,且$α∈[{\frac{π}{12},\frac{π}{6}}]$,則該雙曲線離心率e的取值范圍為( 。
A.$[{\sqrt{2},\sqrt{3}+1}]$B.$[{\sqrt{3},2+\sqrt{3}}]$C.$[{\sqrt{2},2+\sqrt{3}}]$D.$[{\sqrt{3},\sqrt{3}+1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)于兩個(gè)實(shí)數(shù)a,b,min{a,b}表示a,b中的較小數(shù).設(shè)f (x)=min{x,$\frac{1}{x}$}(x>0),則不等式f (x)≥log42的解集是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直角三角形ABC中,A=90°,B=60°,B,C為雙曲線E的兩個(gè)焦點(diǎn),點(diǎn)A在雙曲線E上,則該雙曲線的離心率為( 。
A.$\sqrt{3}+1$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與函數(shù)y=$\sqrt{x}$(x≥0)的圖象交于點(diǎn)P,若函數(shù)y=$\sqrt{x}$的圖象與點(diǎn)P處的切線過雙曲線左焦點(diǎn)F(-4,0),則雙曲線的離心率是(  )
A.$\frac{\sqrt{17}+4}{4}$B.$\frac{\sqrt{17}+3}{4}$C.$\frac{\sqrt{17}+2}{4}$D.$\frac{\sqrt{17}+1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,正方形ABCD的邊長(zhǎng)為2$\sqrt{2}$,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD,F(xiàn)O=$\sqrt{3}$.
(1)求證:FC∥平面ADE;
(2)求三棱錐O-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線與拋物線y2=4x的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若雙曲線的離心率為2,則△AOB的面積為( 。
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知(2-3x)9=a0+a1x+a2x2+…+a9x9,則a1+a2+…+a9=-513.

查看答案和解析>>

同步練習(xí)冊(cè)答案