A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 確定拋物線C:y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線方程為x=-1,利用n=|MF|+|NF|,由拋物線的定義可得n=xM+1+xN+1=2x0+2,求出線段MN的垂直平分線方程,確定線段MN的垂直平分線與x軸交點(diǎn)的橫坐標(biāo)a,即可得出結(jié)論.
解答 解:拋物線C:y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線方程為x=-1.
設(shè)MN的中點(diǎn)坐標(biāo)為(x0,y0),則
∵n=|MF|+|NF|,
∴由拋物線的定義可得n=xM+1+xN+1=2x0+2.
線段MN的垂直平分線方程為y-y0=-$\frac{1}{k}$(x-x0),
令y=0,x=ky0+x0=a
又由點(diǎn)差法可得y0=$\frac{2}{k}$,∴ky0=2,
∴a=2+x0,
∴2a-n=2.
故選:A.
點(diǎn)評(píng) 本題考查拋物線的方程與性質(zhì),考查拋物線的定義,考查點(diǎn)差法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. | 變量x,y之間呈現(xiàn)負(fù)相關(guān)關(guān)系 | |
B. | m=4 | |
C. | 可以預(yù)測(cè),當(dāng)x=11時(shí),y=2.6 | |
D. | 由表格數(shù)據(jù)知,該回歸直線必過點(diǎn)(9,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②③ | B. | ②③④ | C. | ①③④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{5}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x>1,使得-x2+2x-1≤0 | B. | ?x0>1,使得-x02+2x0-1<0 | ||
C. | ?x>1,使得-x2+2x-1<0 | D. | ?x≤1,使得-x2+2x-1<0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com