【題目】2020年春,新型冠狀病毒在我國湖北武漢爆發(fā)并訊速蔓延,病毒傳染性強并嚴重危害人民生命安全,國家衛(wèi)健委果斷要求全體人民自我居家隔離,為支援湖北武漢新型冠狀病毒疫情防控工作,各地醫(yī)護人員紛紛逆行,才使得病毒蔓延得到了有效控制.某社區(qū)為保障居民的生活不受影響,由社區(qū)志愿者為其配送蔬菜、大米等生活用品,記者隨機抽查了男、女居民各100名對志愿者所買生活用品滿意度的評價,得到下面的2×2列聯(lián)表.
特別滿意 | 基本滿意 | |
男 | 80 | 20 |
女 | 95 | 5 |
(1)被調(diào)查的男性居民中有5個年輕人,其中有2名對志愿者所買生活用品特別滿意,現(xiàn)在這5名年輕人中隨機抽取3人,求至多有1人特別滿意的概率.
(2)能否有99%的把握認為男、女居民對志愿者所買生活用品的評價有差異?
附:
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,任意,不等式恒成立時最大的記為,當時,的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當 時,求函數(shù)圖象在點處的切線方程;
(2)當時,討論函數(shù)的單調(diào)性;
(3)是否存在實數(shù),對任意,且有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為曲線上一動點,動點滿足.
(1)求點軌跡的直角坐標方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,是上一個動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與直線互相垂直,且交點為Q,點,線段QF的垂直平分線與直線交于點P.
(I)若動點P的軌跡為曲線E,求曲線E的方程;
(Ⅱ)已知點,經(jīng)過點M的兩條直線分別與曲線E交于A,B和C,D,且,設(shè)直線AC,BD的斜率分別為,是否存在常數(shù),使得當變動時,?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,的面積為2.
(I)求橢圓C的方程;
(II)設(shè)M是橢圓C上一點,且不與頂點重合,若直線與直線交于點P,直線與直線交于點Q.求證:△BPQ為等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為,曲線C2的直角坐標方程為.
(1)若直線l與曲線C1交于M、N兩點,求線段MN的長度;
(2)若直線l與x軸,y軸分別交于A、B兩點,點P在曲線C2上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對數(shù)列,規(guī)定為數(shù)列的一階差分數(shù)列,其中,規(guī)定為的二階差分數(shù)列,其中.
(1)數(shù)列的通項公式,試判斷,是否為等差數(shù)列,請說明理由?
(2)數(shù)列是公比為的正項等比數(shù)列,且,對于任意的,都存在,使得,求所有可能的取值構(gòu)成的集合;
(3)各項均為正數(shù)的數(shù)列的前項和為,且,對滿足,的任意正整數(shù)、、,都有,且不等式恒成立,求實數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com