19.如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),并且相鄰兩行數(shù)之間有一定的關(guān)系,則第7行第4個(gè)數(shù)(從左往右數(shù))為( 。
A.$\frac{1}{140}$B.$\frac{1}{105}$C.$\frac{1}{60}$D.$\frac{1}{42}$

分析 根據(jù)每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,先求出第5,6,7三行的第2個(gè)數(shù),再求出6,7兩行的第3個(gè)數(shù),求出第7行的第4個(gè)數(shù).

解答 解:設(shè)第n行第m個(gè)數(shù)為a(n,m),
由題意知a(6,1)=$\frac{1}{6}$,a(7,1)=$\frac{1}{7}$,
∴a(7,2)=a(6,1)-a(7,1)=$\frac{1}{6}$-$\frac{1}{7}$=$\frac{1}{42}$,
a(6,2)=a(5,1)-a(6,1)=$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{30}$,
a(7,3)=a(6,2)-a(7,2)=$\frac{1}{30}$-$\frac{1}{42}$=$\frac{1}{105}$,
a(6,3)=a(5,2)-a(6,2)=$\frac{1}{20}$-$\frac{1}{30}$=$\frac{1}{60}$,
∴a(7,4)=a(6,3)-a(7,3)=$\frac{1}{60}$-$\frac{1}{105}$=$\frac{1}{140}$.
故選A.

點(diǎn)評(píng) 本題考查通過(guò)觀察歸納出各數(shù)的關(guān)系,考差了學(xué)生的觀察能力和計(jì)算能力,屬于中檔題,解題時(shí)要認(rèn)真審題,仔細(xì)解答,避免錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為梯形,AD∥BC,∠ABC=∠BAD=90°,AD=2BC=2,PA=AB=$\sqrt{3}$,E為CD中點(diǎn).
(Ⅰ)求證:平面PAE⊥平面PCD;
(Ⅱ)求點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)y=logax(a>0,且a≠1)與y=log${\;}_{\frac{1}{a}}$x(a>0,且a≠1)的圖象關(guān)于x軸對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,面PAB⊥底面ABCD,PB=1,且∠PBA=60°
(1)求證:面PAD⊥面PBD;
(2)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位,已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),直線l的極坐標(biāo)方程為ρ=$\frac{4}{sinθ+cosθ}$,點(diǎn)P在l上.
(1)過(guò)P向圓C引切線,切點(diǎn)為F,求|PF|的最小值;
(2)射線OP交圓C于R,點(diǎn)Q在OP上,且滿(mǎn)足|OP|2=|OQ|•|OR|,求Q點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到如圖2所示的幾何體D-ABC
(Ⅰ)求證:AD⊥平面BCD;
(Ⅱ)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.極坐標(biāo)系中,點(diǎn)A(1,$\frac{π}{6}$),B(3,$\frac{5π}{6}$)之間的距離是( 。
A.$\sqrt{10}$B.$\sqrt{7}$C.$\sqrt{13}$D.$\sqrt{10+3\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.觀察式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,
…,
則可歸納出一般式子為( 。
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$ (n≥2)B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n+1}{n}$ (n≥2)
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$ (n≥2)D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n}{2n+1}$ (n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若函數(shù)f(x)=|3x-2|-b有兩個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是0<b<2..

查看答案和解析>>

同步練習(xí)冊(cè)答案