5.二次函數(shù)f(x)的圖象如圖所示,則f(x-1)>0的解集為( 。
A.(-2,1)B.(0,3)C.(-1,2]D.(-∞,0)∪(3,+∞)

分析 根據(jù)函數(shù)f(x)的圖象可得f(x)>0的解集為{x|-1<x<2},而f(x-1)的圖象是由f(x-1)的圖象向右平移一個單位得到的,從而求得f(x-1)>0的解集.

解答 解:根據(jù)f(x)的圖象可得f(x)>0的解集為{x|-1<x<2},而f(x-1)的圖象是由f(x-1)的圖象向右平移一個單位得到的,
故f(x-1)>0的解集為(0,3),
故選:B.

點評 本題主要考查二次函數(shù)的圖象,函數(shù)圖象的平移規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列四個命題:
(1)若p∨q為假命題,則p、q均為假命題;
(2)命題“?x∈[1,2),x2-a≤0”為真命題的一個充分不必要條件可以是a≥1;
(3)已知函數(shù)$f({x-\frac{1}{x}})$=x2+$\frac{1}{x^2}$,則f(2)=6;
(4)若函數(shù)y=$\frac{mx-1}{{m{x^2}+4mx+3}}$的定義域為R,則實數(shù)m的取值范圍是$({0,\frac{3}{4}})$.
其中真命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知|$\overrightarrow a|=5$,|$\overrightarrow b|=3$,且$\overrightarrow a$•$\overrightarrow b$=-12,則向量$\overrightarrow a$在向量$\overrightarrow b$上的射影等于( 。
A.-4B.4C.-$\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.把復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline{z}$,i為虛數(shù)單位,若z=1+i.
(1)求復(fù)數(shù)(1+z)•$\overline{z}$;
(2)求(1+$\overline{z}$)•z2的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知△ABC的外接圓圓心為O,半徑R=1,且2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow 0$,則AC=$\frac{{3\sqrt{6}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{\frac{-2ax+a+1}{x},x>0}\end{array}\right.$(其中-2≤a<-1),若存在區(qū)間[m,n],使函數(shù)f(x)的定義域和值域均為[m,n],則|m-n|的最大值是(  )
A.$\sqrt{3}$B.3C.12D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.復(fù)數(shù)z=$\frac{5}{i+2}$在復(fù)平面內(nèi),z所對應(yīng)的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$\overrightarrow{a}$與$\overrightarrow$夾角為θ,定義:$\overrightarrow{a}$在$\overrightarrow$方向上的“假投影”為|$\overrightarrow{a}$|$\overrightarrow{a}$cosθ,記為J($\overrightarrow{a}$,$\overrightarrow$),若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),則|J($\overrightarrow{a}$,$\overrightarrow$)|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案