1.設(shè)直線y=$\frac{1}{2}$x+b是曲線y=lnx的一條切線,則b的值為( 。
A.ln2-1B.ln2-2C.2ln2-1D.2ln2-2

分析 設(shè)切點為(m,n),代入曲線的方程,求得曲線對應(yīng)的函數(shù)的導(dǎo)數(shù),可得切線的斜率,由切線的方程可得m=2,求得n,代入切線的方程可得b.

解答 解:設(shè)切點為(m,n),則n=lnm,
y=lnx的導(dǎo)數(shù)為y′=$\frac{1}{x}$,
可得切線的斜率為$\frac{1}{m}$,
由切線方程y=$\frac{1}{2}$x+b,可得$\frac{1}{m}$=$\frac{1}{2}$,
解得m=2,n=ln2,
b=n-$\frac{1}{2}$m=ln2-1.
故選:A.

點評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和設(shè)出切點,運(yùn)用切線的方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的右焦點為F,P是橢圓上一點,點A(0,2$\sqrt{3}$),則△APF的周長最大值等于( 。
A.10B.12C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲口袋中裝有10個紅球,8個白球,乙口袋中裝有12個紅球,6個白球,現(xiàn)分別從甲、乙口袋中各任意取出1個小球.求:(1)取得兩個球都是紅球,有多少種取法?
(2)取得兩個球中恰有一個是紅球,有多少種取法?
(3)取得兩個球中至少有一個是紅球,有多少種取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點A($\sqrt{2}$,0),且離心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)如圖,過橢圓C2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1上任意一點P作橢圓C1的兩條切線PM和PN,切點分別為M、N.當(dāng)點P在橢圓C2上運(yùn)動時,是否存在圓心在原點的定圓恒與直線MN相切?若存在,求出該定圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足2an+1=an+2+an(n∈N*),且a3+a7=20,a2+a5=14.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$,數(shù)列{bn}的前n項和Sn,求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點A(0,3),若圓C:(x-a)2+(y-2a+4)2=1上存在點M,使|MA|=2|MO|,則圓心C的橫坐標(biāo)a的取值范圍為[0,$\frac{12}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.福彩中心發(fā)行彩票的目的是為了獲取資金資助福利事業(yè),現(xiàn)在福彩中心準(zhǔn)備發(fā)行一種面值為5元的福利彩票刮刮卡,設(shè)計方案如下:①該福利彩票中獎率為50%;②每張中獎彩票的中獎獎金有5元,50元和150元三種;③顧客購買一張彩票獲得150元獎金的概率為p,獲得50元獎金的概率為2%.
(1)假設(shè)某顧客一次性花15元購買三張彩票,求其至少有兩張彩票中獎的概率;
(2)為了能夠籌得資金資助福利事業(yè),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設(shè)該公司在甲、乙兩個電視臺做廣告的時間分別為x分鐘和y分鐘.
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并在坐標(biāo)系中用陰影表示相應(yīng)的平面區(qū)域;
(Ⅱ)該公司如何分配在甲、乙兩個電視臺做廣告的時間使公司的收益最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若cosB=$\frac{1}{4}$,b=4,sinC=2sinA,則△ABC的面積為(  )
A.$\frac{{2\sqrt{15}}}{3}$B.$\sqrt{15}$C.$2\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

同步練習(xí)冊答案