分析 由圓的方程求出圓心坐標(biāo),設(shè)出M坐標(biāo),由|MA|=2|MO|求得M的軌跡,再由兩圓相交得到圓心距與半徑的關(guān)系,求解不等式組得答案.
解答 解:由C:(x-a)2+(y-2a+4)2=1,得圓心C(a,2a-4),
設(shè)M(x,y),
∵|MA|=2|MO|,
∴$\sqrt{{x}^{2}+(y-3)^{2}}=2\sqrt{{x}^{2}+{y}^{2}}$,
得x2+y2+2y-3=0,即x2+(y+1)2=4.
∴點(diǎn)M在以D(0,-1)為圓心,以2為半徑的圓上,
則圓C與圓D有公共點(diǎn),滿足2-1≤CD≤2+1,
即1$≤\sqrt{{a}^{2}+(2a-3)^{2}}≤3$,
即$\left\{\begin{array}{l}{5{a}^{2}-12a+8≥0}\\{5{a}^{2}-12a≤0}\end{array}\right.$,解得0$≤a≤\frac{12}{5}$.
故答案為:[0,$\frac{12}{5}$].
點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,考查了兩圓間位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,考查不等式組的解法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ln2-1 | B. | ln2-2 | C. | 2ln2-1 | D. | 2ln2-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-$\sqrt{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com