13.福彩中心發(fā)行彩票的目的是為了獲取資金資助福利事業(yè),現(xiàn)在福彩中心準備發(fā)行一種面值為5元的福利彩票刮刮卡,設(shè)計方案如下:①該福利彩票中獎率為50%;②每張中獎彩票的中獎獎金有5元,50元和150元三種;③顧客購買一張彩票獲得150元獎金的概率為p,獲得50元獎金的概率為2%.
(1)假設(shè)某顧客一次性花15元購買三張彩票,求其至少有兩張彩票中獎的概率;
(2)為了能夠籌得資金資助福利事業(yè),求p的取值范圍.

分析 (1)利用概率求解公式,可求其至少有兩張彩票中獎的概率;
(2)確定福彩中心賣出一張彩票可能獲得的資金的取值,求出相應的概率,可得其分布列與期望,利用期望大于0,即可求得結(jié)論.

解答 解:(1)設(shè)至少有兩張彩票中獎事件A,則P(A)=C32(0.5)3+C33(0.5)3=$\frac{1}{2}$,
(2)設(shè)福彩中心賣出一張彩票可能獲得的資金為ξ,則ξ可以取5,0,-45,-145,
故ξ的分布列為

ξ50-45-145
P50%50%-2%-p2%p
所以ξ的期望為Eξ=5×50%+0×(50%-2%-p)+(-45)×2%+(-145)×p=2.5-90%-145p
所以當1.6-145p>0時,即P<$\frac{8}{725}$
所以當0<P<$\frac{8}{725}$時,福彩中心可以獲取資金資助福利事業(yè).

點評 本題考查事件的概率公式,考查隨機變量的分布列與期望,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,△PAD為正三角形,四邊形ABCD是邊長為2的菱形,
∠BAD=60°平面ABE與直線PA,PD分別交于點E,F(xiàn).
(Ⅰ)求證:AB∥EF;
(Ⅱ)若平面PAD⊥平面ABCD,試求三棱錐A-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),若f(x)+g(x)=3x,則下列結(jié)論正確的是(  )
A.f(1)=$\frac{8}{3}$B.g(1)=$\frac{10}{3}$C.若a>b,則f(a)>f(b)D.若a>b,則g(a)>g(b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)直線y=$\frac{1}{2}$x+b是曲線y=lnx的一條切線,則b的值為(  )
A.ln2-1B.ln2-2C.2ln2-1D.2ln2-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.盒子中的紅、白、黑、黃4個大小相同的球,從中抽取一個,則取出白球的概率為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.畫出解關(guān)于x的不等式ax+b<0(a,b∈R)的流程圖及基本語句程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.將9個學生分配到甲、乙、丙三個宿舍,每宿舍至多4人((床鋪不分次序),則不同的分配方法有( 。
A.3710B.11130C.21420D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.{an}滿足an+1=an+an-1(n∈N*,n≥2),Sn是{an}前n項和,a5=1,則S6=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow a$=(-3,1),$\overrightarrow b$=(-1,2),如果向量$\overrightarrow a$+λ$\overrightarrow b$與$\overrightarrow b$垂直,則實數(shù)λ=( 。
A.$-\frac{4}{3}$B.1C.-1D.$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案