【題目】設命題:實數(shù)滿足 (其中),命題:實數(shù)滿足

(1)若,且為真命題,求實數(shù)的取值范圍.

(2)若的必要不充分條件,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】

(1)當a=1時,解得1<x<4,得到當p為真時,實數(shù)x的取值范圍是1<x<4.當q為真時,解得2<x≤5,進而根據(jù)p∧q為真,即可求解;

(2)由的必要不充分條件,即p是q的必要不充分條件,即,根據(jù)集合的運算即可求解.

(1)當a=1時,x2-5ax+4a2<0即為x2-5x+4<0,解得1<x<4,

當p為真時,實數(shù)x的取值范圍是1<x<4.當q為真時,由,知2<x≤5.

若p∧q為真,則p真且q真,所以實數(shù)x的取值范圍是(2,4).

(2)的必要不充分條件,即p是q的必要不充分條件.

設A={x|p(x)},B={x|q(x)},則.由x2-5ax+4a2<0得(x-4a)(x-a)<0,∵a>0,∴A={x|a<x<4a},又B={x|2<x≤5},則a≤2且4a>5,解得<a≤2.

∴實數(shù)a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, , 分別為 的中點, , .

(1)求證:直線平面

(2)求證:直線 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個子中裝有四張卡片,每張卡片上寫有一個數(shù)字,數(shù)字分別是,現(xiàn)盒子中隨機抽取卡片,每張卡片被抽到的概率相等.

(1)若一次抽取三張卡片,求抽到的三張卡片上的數(shù)字之和大于的概率;

(2)若第一次抽一張卡片,放回后勻再抽取一張卡片,求兩次抽取中至少有一次到寫有數(shù)字的卡片的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆,唐三彩的生產(chǎn)至今已有1300多年的歷史,對唐三彩的復制和仿制工藝,至今也有百余年的歷史。某陶瓷廠在生產(chǎn)過程中,對仿制的100件工藝品測得其重量(單位; )數(shù)據(jù),將數(shù)據(jù)分組如下表:

分組

頻數(shù)

頻率

4

26

28

10

2

合計

100

(1)在答題卡上完成頻率分布表;

(2)以表中的頻率作為概率,估計重量落在中的概率及重量小于2.45的概率是多少?

(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是作為代表.據(jù)此,估計這100個數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,準線為,是拋物線上的兩個動點,且滿足.設線段的中點上的投影為,則的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》第三章“衰分”介紹了比例分配問題,“衰分”是按比例遞減分配的意思,通常稱遞減的比例為“衰分比”.如:已知三人分配獎金的衰分比為,若分得獎金1000元,則所分得獎金分別為900元和810.某科研所四位技術人員甲、乙、丙、丁攻關成功,共獲得獎金59040元,若甲、乙、丙、丁按照一定的“衰分比”分配獎金,且甲與丙共獲得獎金32800元,則“衰分比”與丙所獲得的獎金分別為(

A.12800B.,12800

C.10240D.,10240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓內一定點,動圓過點且與圓內切.記動圓圓心的軌跡為.

(Ⅰ)求軌跡方程;

(II)過點的動直線l交軌跡MN兩點,試問:在坐標平面上是否存在一個定點Q,使得以線段MN為直徑的圓恒過點Q?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力,某移動支付公司在我市隨機抽取了100名移動支付用戶進行調查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計

10

8

7

11

14

50

(1)如果認為每周使用移動支付超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過的前提下,認為是否“喜歡使用移動支付”與性別有關?

(2)每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶,

①求抽取的4名用戶中,既有男“移動支付達人”又有女“移動支付達人”的概率;

②為了鼓勵女性用戶使用移動支付,對抽出的女“移動支付達人”每人獎勵500元,記獎勵總金額為,求的數(shù)學期望.

附表及公式:

查看答案和解析>>

同步練習冊答案