13.在直角坐標系xOy中,已知直線l1:y=tanα•x(0≤a<π,α$≠\frac{π}{2}$),拋物線C:$\left\{\begin{array}{l}{x={t}^{2}}\\{y=-2t}\end{array}\right.$(t為參數(shù)).以原點O為極點,x軸的非負半軸為極軸建立極坐標系
(Ⅰ)求直線l1和拋物線C的極坐標方程;
(Ⅱ)若直線l1和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2,l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.

分析 (Ⅰ)直線l1是過原點且傾斜角為α 的直線,拋物線C的普通方程為y2=4x,由此能求出直線l1和拋物線C的極坐標方程.
(Ⅱ)由直線l1和拋物線C有兩個交點知α≠0,把θ=α代入ρsin2θ=4cosθ,得ρA=$\frac{4cosα}{si{n}^{2}α}$,直線l2的極坐標方程為$θ=α+\frac{π}{2}$,(ρ∈R),代入ρsin2θ=4cosθ,求出ρB=-$\frac{4sinα}{co{s}^{2}α}$,由此能求出△OAB的面積的最小值.

解答 解:(Ⅰ)∵直線l1:y=tanα•x(0≤a<π,α$≠\frac{π}{2}$),
∴直線l1是過原點且傾斜角為α 的直線,
其極坐標方程為θ=α($α≠\frac{π}{2}$),(2分)
拋物線C的普通方程為y2=4x,(3分)
其極坐標方程為(ρsinθ)2=4ρcosθ,
化簡得ρsin2θ=4cosθ.(5分)
(Ⅱ)由直線l1和拋物線C有兩個交點知α≠0,
把θ=α代入ρsin2θ=4cosθ,得ρA=$\frac{4cosα}{si{n}^{2}α}$,(6分)
可知直線l2的極坐標方程為$θ=α+\frac{π}{2}$,(ρ∈R),(7分)
代入ρsin2θ=4cosθ,得ρBcos2α=-4sinα,
所以ρB=-$\frac{4sinα}{co{s}^{2}α}$,(8分)
${S}_{△OAB}=\frac{1}{2}|OA|•|OB|=\frac{1}{2}|{ρ}_{A}|•|{ρ}_{B}|$=$\frac{16}{|2sinαcosα|}$=$\frac{16}{|sin2α|}$≥16,
∴△OAB的面積的最小值為16.(10分)

點評 本題考查拋物線、直線方程、極坐標方程、直角坐標方程、參數(shù)方程、三角形面積等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在等差數(shù)列{an}中,前n項和為Sn,$\frac{S_2}{S_4}=\frac{1}{3}$,則$\frac{S_4}{S_8}$等于( 。
A.$\frac{3}{10}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an}的前n項和為Sn,a1=a,${a_2}={a^2}$,an+2=an+1-an,S56=6,則a=-3或2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若函數(shù)f(x)=$\sqrt{4x-3}$,則f(x)的導函數(shù)f′(x)=$\frac{{2\sqrt{4x-3}}}{4x-3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,已知$\overrightarrow{AB}$與$\overrightarrow{BC}$的夾角為150°,|$\overrightarrow{AC}$|=2,則|$\overrightarrow{AB}$|的取值范圍是(0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知關于x的不等式ax2-3x+2≤0的解集為{x|1≤x≤b}.
(1)求實數(shù)a,b的值;
(2)解關于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設$(1-x){(2x+1)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_5}{x^6}$,則a2等于30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知實數(shù)a≠b,且滿足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2,則b$\sqrt{\frac{a}}$+a$\sqrt{\frac{a}}$的值為(  )
A.-23B.23C.13D.-13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)已知數(shù)列{an}的各項均為正數(shù),${b_n}=n{({1+\frac{1}{n}})^n}•{a_n}({n∈{N_+}})$,計算$\frac{b_1}{a_1}$,$\frac{{{b_1}{b_2}}}{{{a_1}{a_2}}}$,$\frac{{{b_1}{b_2}{b_3}}}{{{a_1}{a_2}{a_3}}}$,由此推測計算$\frac{{{b_1}{b_2}…{b_n}}}{{{a_1}{a_2}…{a_n}}}$的公式,并給出證明.
(2)求證:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…$\frac{1}{3n}$>$\frac{5}{6}$(n≥2,n∈N*

查看答案和解析>>

同步練習冊答案