16.若關(guān)于x的不等式a-ax>ex(2x-1)(a>-1)有且僅有兩個整數(shù)解,則實(shí)數(shù)a的取值范圍為( 。
A.(-$\frac{3}{4}$,$\frac{5}{3{e}^{2}}$]B.(-1,$\frac{3}{2e}$]C.(-$\frac{3}{2e}$,-$\frac{5}{3{e}^{2}}$]D.(-$\frac{3}{4}$,-$\frac{5}{3{e}^{2}}$)

分析 構(gòu)造函數(shù),作出兩個函數(shù)的圖象得到不等式關(guān)系進(jìn)行求解即可.

解答 解:由a-ax>ex(2x-1)(a>-1),
設(shè)g(x)=a-ax,h(x)=ex(2x-1),
h′(x)=ex(2x-1)+2ex=ex(2x+1),
由h′(x)>0得x>-$\frac{1}{2}$,
由h′(x)<0得x<-$\frac{1}{2}$,
即當(dāng)x=-$\frac{1}{2}$時,函數(shù)h(x)取得極小值h(-$\frac{1}{2}$),
作出g(x)的圖象如圖:
若g(x)>h(x)解集中的整數(shù)恰為2個,
則x=0,-1是解集中的兩個整數(shù),
則滿足$\left\{\begin{array}{l}{g(-1)>h(-1)}\\{g(-2)≤h(-2)}\end{array}\right.$,即$\left\{\begin{array}{l}{2a>\frac{-3}{e}}\\{3a≤\frac{-5}{{e}^{2}}}\end{array}\right.$,
則$\left\{\begin{array}{l}{a>\frac{-3}{2e}}\\{a≤-\frac{5}{3{e}^{2}}}\end{array}\right.$,即-$\frac{3}{2e}$<a≤-$\frac{5}{3{e}^{2}}$,
即實(shí)數(shù)a的取值范圍是(-$\frac{3}{2e}$,-$\frac{5}{3{e}^{2}}$],
故選:C

點(diǎn)評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)不等式整數(shù)根的個數(shù),結(jié)合數(shù)形結(jié)合建立不等式關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.以y=±$\frac{1}{2}$x為漸近線,且經(jīng)過點(diǎn)P(2,2)的雙曲線的方程為$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)=|x-1|-mx,若關(guān)于x的不等式f(x)<0解集中的整數(shù)恰為3個,則實(shí)數(shù)m的取值范圍為   ( 。
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知公差不為零的等差數(shù)列{an},滿足a1+a3+a5=9,且a1,a4,a16成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}{a_{n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在某校召開的高考總結(jié)表彰會上有3位數(shù)學(xué)老師、2位英語老師和1位語文老師做典型發(fā)言.現(xiàn)在安排這6位老師的發(fā)言順序,則3位數(shù)學(xué)老師互不相鄰的排法共有144種.(請用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.有2名男生3名女生,從中選3人去敬老院打掃衛(wèi)生,要求必須有男生,則不同的選法有9種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式(3+x)(2-x)<0的解集為{x|x>2或x<-3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.圓O上一點(diǎn)C在直徑AB上的射影為D,AD=4,DB=8,求CD,AC和BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某林場的樹木每年以25%的增長率增長,則第10年末的樹木總量是今年的(1+25%)10倍.

查看答案和解析>>

同步練習(xí)冊答案