1.已知函數(shù)f(x)=|x-a|-|x+3|,a∈R.
(1)當(dāng)a=-1時,解不等式f(x)≤1;
(2)不等式f(x)≤4在x∈[-2,3]時恒成立,求a的取值范圍.

分析 (1)將a=-1代入f(x),通過討論x的范圍,得到不等式組,解出即可;
(2)問題轉(zhuǎn)化為-7≤a≤2x+7在x∈[-2,3]時恒成立,而2x+7在x∈[-2,3]的最小值是3,從而求出a的范圍即可.

解答 解:(1)a=-1時,f(x)=|x+1|-|x+3|≤1,
?$\left\{\begin{array}{l}{x≤-3}\\{-x-1+x+3≤1}\end{array}\right.$或$\left\{\begin{array}{l}{-3<x<-1}\\{-x-1-x-3≤1}\end{array}\right.$或$\left\{\begin{array}{l}{x≥-1}\\{x+1-x-3≤1}\end{array}\right.$,
解得:x≤-1;
(2)∵x∈[-2,3],
∴x+3>0,
∴不等式f(x)≤4在x∈[-2,3]時恒成立,
?|x-a|≤x+7在x∈[-2,3]時恒成立,
?-(x+7)≤x-a≤x+7在x∈[-2,3]時恒成立,
?-x-7-x≤-a≤7在x∈[-2,3]時恒成立,
?-7≤a≤2x+7在x∈[-2,3]時恒成立,
而2x+7在x∈[-2,3]的最小值是3,
∴-7≤a≤3.

點評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x3-12x+8在區(qū)間[-3,3]上的最大值與最小值分別為M、m,則$\frac{M}{m}$等于( 。
A.-24B.-17C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過點A(0,2)與拋物線C:y2=4x恰有一個交點的直線有( 。l.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)為偶函數(shù)的是( 。
A.f(x)=xB.f(x)=x3C.f(x)=x2,x∈(-5,5]D.f(x)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a>0,b>0,且$\frac{1}{a}$+$\frac{2}$=1,則ab的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,圓O的半徑為1,A是圓上的定點,P是圓上的動點,角x的始邊為射線OA,終邊為射線OP,將△POA的面積表示為x的函數(shù)f(x),則y=f(x)在[-π,π]上的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a4=23,an+1=2an+1,則a2等于( 。
A.5B.$\frac{11}{2}$C.6D.$\frac{13}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.己知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(  )
A.2B.3C.$\frac{11}{5}$D.$\frac{37}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知m,n,l為不同的直線,α,β,γ為不同的平面,則下列命題正確的是( 。
A.若m?α,n?α,m∥β,n∥β,則α∥βB.若m∥n,n∥α,則m∥α
C.若m⊥α,n⊥α,則m∥nD.若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

同步練習(xí)冊答案