16.已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,且滿足(b-c)2=a2-bc.
(1)求角A的大小;
(2)若a=3,sinC=2sinB,求△ABC的面積.

分析 (1)由已知等式可得b2+c2-a2=bc,由余弦定理可得cosA=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),即可求得A的值.
(2)由sinC=2sinB及正弦定理可得c=2b,又a=3,A=$\frac{π}{3}$,由余弦定理可解得b,c的值,利用三角形面積公式即可得解.

解答 (本題滿分為12分)
解:(1)∵(b-c)2=a2-bc,可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2abc}$=$\frac{1}{2}$,…4分
又∵A∈(0,π),
∴A=$\frac{π}{3}$…6分
(2)由sinC=2sinB及正弦定理可得:c=2b,
∵a=3,A=$\frac{π}{3}$,…8分
∴由余弦定理可得:a2=b2+c2-2bccosA=b2+c2-bc=3b2,
∴解得:b=$\sqrt{3}$,c=2$\sqrt{3}$,…10分
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\sqrt{3}×2\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$…12分

點評 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知全集U=R,若集合A={x|$\frac{x}{x-1}>0$},則∁UA=[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在等差數(shù)列{an}中,對任意正整數(shù)n,都有an+1+an=4n-4028,則a2015=2015.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z=3+$\frac{3+4i}{4-3i}$,則|z|等于( 。
A.3B.$\sqrt{10}$C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(1-x)(1+x)4的展開式中x3系數(shù)為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點A(2,4)和B(0,-3)及C(5,1),求$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2+4x+4,若存在實數(shù)t,當(dāng)x∈[1,t]時,f(x+a)≤4x恒成立,則實數(shù)t的最大值為( 。
A.4B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=sinx•tanx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知角β的頂點為坐標(biāo)原點O,始邊在x軸的正半軸上,終邊經(jīng)過點P(-4,3)
(1)求sinβ與sin2β的值
(2)已知函數(shù)f(x)=3cos(x-$\frac{π}{4}$),求函數(shù)f(x)的最大值和最小正周期,并求f(β)的值.

查看答案和解析>>

同步練習(xí)冊答案