如圖三棱錐中,是等邊三角形.

(Ⅰ)求證:;
(Ⅱ)若二面角 的大小為,求與平面所成角的正弦值.

(I) 詳見解析;(II)

解析試題分析:(I) 求證:,只需證明一條直線垂直于另一條直線所在的平面,注意到是等邊三角形,可考慮取的中點(diǎn),連接,只需證即可,顯然易證,從而可得;(II)若二面角 的大小為,求與平面所成角的正弦值,首先確定二面角的平面角,由(I)可知,即為二面角的平面角,所以,求與平面所成角的正弦值,關(guān)鍵是找在平面上的射影,注意到平面平面,可過點(diǎn),則,則與平面所成角,為了便于計(jì)算,可設(shè),從而求出與平面所成角的正弦值.
試題解析:(I)取的中點(diǎn),連接.                 2分
是等邊三角形,,              4分
,     6分
(II)由(I)及條件知,二面角的平面角為,       8分
過點(diǎn),由(I)知,, 又,
,                    10分
與平面所成角,               11分
,則.   14分
考點(diǎn):線線垂直,線面垂直,二面角,線面角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.

(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求棱錐E-DFC的體積;
(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?如果存在,求出的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖的幾何體中,平面為正方形,平面為等腰梯形,,,.

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,在四面體A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點(diǎn).

(1)證明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

⑴求證:;
⑵如果,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正方體的棱長(zhǎng)為,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中錯(cuò)誤的是(     )

A.
B.三棱錐的體積為定值
C.二面角的大小為定值
D.異面直線所成角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐E—ABCD中,底面ABCD為邊長(zhǎng)為5的正方形,AE平面CDE,AE=3.

(1)若的中點(diǎn),求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直棱柱中,分別是的中點(diǎn),.

⑴證明:;
⑵求EC與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐中,底面是個(gè)邊長(zhǎng)為的正方形,側(cè)棱底面,且,的中點(diǎn).

(I)證明:平面
(II)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案