精英家教網 > 高中數學 > 題目詳情

【題目】汕尾市基礎教育處為調查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調查,現將日均自學時間小于1小時的學生稱為“自學不足”者根據調查結果統(tǒng)計后,得到如下列聯表,已知在調查對象中隨機抽取1人,為“自學不足”的概率為

非自學不足

自學不足

合計

配有智能手機

30

沒有智能手機

10

合計

請完成上面的列聯表;

根據列聯表的數據,能否有的把握認為“自學不足”與“配有智能手機”有關?

附表及公式: ,其中

【答案】(1)列聯表見解析;(2)有.

【解析】

由題意可得,自學不足的認識為,非自學不足的人數80人,可得列聯表;

代入計算公式結合表格即可作出判斷.

由題意可得,自學不足的認識為,非自學不足的人數80人,結合已知可得下表,

根據上表可得

的把握認為“自學不足”與“配在智能手機”有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點 ,且,求拋物線的方程;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)若函數上單調遞減,試求的取值范圍;

(Ⅲ)若函數的最小值為,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 的中點, 是棱上的點, ,

(Ⅰ)求證:平面平面;

(Ⅱ)若三棱錐的體積是四棱錐體積的,設,試確定的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出以下命題,其中真命題的個數是( )

①若“”是假命題,則“”是真命題;

②命題“若,則”為真命題;

③已知空間任意一點和不共線的三點,,若,則,,四點共面;

④直線與雙曲線交于,兩點,若,則這樣的直線有3條;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

某初級中學共有學生2000名,各年級男、女生人數如下表:


初一年級

初二年級

初三年級

女生

373

x

y

男生

377

370

z

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.

x的值;

現用分層抽樣的方法在全校抽取48名學生,問應在初三年級抽取多少名?

已知y245,z245,求初三年級中女生比男生多的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

(1)求在[0,2]上的最值;

(2)如果對于任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在楊輝三角形中,從第2行開始,除1以外,其它每一個數值是它上面的兩個數值之和,該三角形數陣開頭幾行如圖所示.

(1)在楊輝三角形中是否存在某一行,使該行中三個相鄰的數之比是3∶4∶5?若存在,試求出是第幾行;若不存在,請說明理由;

(2)已知n,r為正整數,且n≥r+3.求證:任何四個相鄰的組合數C,C,C,C不能構成等差數列.

查看答案和解析>>

同步練習冊答案