【題目】

(1)求在[0,2]上的最值;

(2)如果對于任意的,都有成立,求實數(shù)的取值范圍.

【答案】(1) 最小值為,最大值為1 (2) [1,+∞)

【解析】

1)利用函數(shù)的導數(shù),求得函數(shù)的單調(diào)區(qū)間,由此求得函數(shù)的最值.2)將原不等式恒成立轉(zhuǎn)化為來求解.由(1)求得的最大值為.轉(zhuǎn)化為,構(gòu)造函數(shù),利用導數(shù)求得的最大值,由此求得的取值范圍.

(1)

得,;由得,,

單調(diào)遞減,在單調(diào)遞增.

,

上的最小值為,最大值為1

(2)對于任意的s,t∈[,2],都有f(s)≥f(t)成立,等價于在[,2]上,函數(shù)f(x)ming(x)max.

由(1)可知在[,2]上,g(x)的最大值為g(2)=1.

在[,2]上,f(x)=+xlnx≥1恒成立等價于a≥x-x2lnx恒成立.

設h(x)=x-x2lnx,h′(x)=1-2xlnx-x,可知h′(x)在[,2]上是減函數(shù),又h′(1)=0,

所以當1<x<2時,h′(x)<0,當<x<1時,h′(x)>0,

即函數(shù)h(x)=x-x2lnx在[,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,

所以h(x)max=h(1)=1,即實數(shù)a的取值范圍是[1,+∞).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】海洋藍洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑兩點間的距離,現(xiàn)在珊瑚群島上取兩點,測得,,,,則,兩點的距離為___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調(diào)查,現(xiàn)將日均自學時間小于1小時的學生稱為“自學不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為“自學不足”的概率為

非自學不足

自學不足

合計

配有智能手機

30

沒有智能手機

10

合計

請完成上面的列聯(lián)表;

根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“自學不足”與“配有智能手機”有關(guān)?

附表及公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的值域;

(2)若函數(shù)的最大值是,求的值;

(3)已知,若存在兩個不同的正數(shù),當函數(shù)的定義域為時,的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)求上的單調(diào)性及極值;

(2)若,對任意的,不等式都在上有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(O為圓心),∠AOB=120°,點C是線段AB上不與A、B重合的動點.MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準,現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}滿足:①a1=1;②所有項an∈N*;③1=a1<a2<…<an<an+1<….設集合Am={n|an≤m,m∈N*),將集合Am中的元素的最大值記為bm,即bm是數(shù)列{an}中滿足不等式an≤m的所有項的項數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.

例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.

(I)若數(shù)列{an}的伴隨數(shù)列為1,1,2,2,2,3,3,3,3……,請寫出數(shù)列{an};

(II)設an=4n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前50項之和;

(III)若數(shù)列{an}的前n項和(其中c為常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項和Tm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,的中點,是線段上的動點,且.

(1)若,求證:;

(2)求二面角的余弦值;

(3)若直線與平面所成角的大小為,求的最大值

查看答案和解析>>

同步練習冊答案