【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)若函數(shù)在上單調(diào)遞減,試求的取值范圍;
(Ⅲ)若函數(shù)的最小值為,試求的值.
【答案】(Ⅰ).(Ⅱ).(Ⅲ).
【解析】試題分析:(Ⅰ)利用導(dǎo)數(shù)求出處的切線斜率,根據(jù)點斜式寫出切線方程;(Ⅱ)函數(shù)在上單調(diào)遞減,即當(dāng)時, 恒成立,等價于,即可求出的取值范圍;(Ⅲ)根據(jù)函數(shù)的單調(diào)性,得出函數(shù)的最小值只能在處取得,從而求得的值.
試題解析:(Ⅰ)當(dāng)時,由得: .
又∵
∴.
∴切線方程為: ,即.
(Ⅱ)∵函數(shù)在上單調(diào)遞減
∴當(dāng)時, 恒成立,即當(dāng)時, 恒成立.
∵函數(shù)的對稱軸為,并且開口向上,
∴當(dāng)時,函數(shù)單調(diào)遞減;當(dāng)時,函數(shù)單調(diào)遞增.
∴“當(dāng)時, 恒成立”必須滿足: ,解得.
∴, 的取值范圍是.
(Ⅲ)設(shè).
①當(dāng)時, , 恒成立,
∴恒成立, 在上單調(diào)遞增,函數(shù)沒有最小值.
②當(dāng)時, .
令得: ,解得.
∴當(dāng)時, , 單調(diào)遞增;
當(dāng)時, , 單調(diào)遞減;
當(dāng)時, , 單調(diào)遞增.
∴當(dāng)時, 取得極大值;
當(dāng)時, 取得極小值.
∴當(dāng)時, ,
∴,則,
又∵函數(shù)的最小值為,
∴函數(shù)的最小值只能在處取得,則,
∴,即,解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則稱該函數(shù)為“函數(shù)”.
(1)判斷函數(shù)是否為“函數(shù)”,并說明理由;
(2)若函數(shù)在定義域上是“函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海洋藍洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究小組為了研究某品牌智能手機在正常使用情況下的電池供電時間,分別從該品牌手機的甲、乙兩種型號中各選取部進行測試,其結(jié)果如下:
甲種手機供電時間(小時) | ||||||
乙種手機供電時間(小時) |
(1)求甲、乙兩種手機供電時間的平均值與方差,并判斷哪種手機電池質(zhì)量好;
(2)為了進一步研究乙種手機的電池性能,從上述部乙種手機中隨機抽取部求這兩部手機中恰有一部手機的供電時間大于該種手機供電時間平均值的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如圖的列聯(lián)表. 已知在全部105人中隨機抽取一人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到8或9號的概率.
參考公式和數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點到定點的距離比它到直線的距離小1,設(shè)動點的軌跡為曲線,過點的直線交曲線于、兩個不同的點,過點、分別作曲線的切線,且二者相交于點.
(1)求曲線的方程;
(2)求證: ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學(xué)生每天放學(xué)后的自學(xué)時間情況,在本市的所有中學(xué)生中隨機抽取了120名學(xué)生進行調(diào)查,現(xiàn)將日均自學(xué)時間小于1小時的學(xué)生稱為“自學(xué)不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為“自學(xué)不足”的概率為.
非自學(xué)不足 | 自學(xué)不足 | 合計 | |
配有智能手機 | 30 | ||
沒有智能手機 | 10 | ||
合計 |
請完成上面的列聯(lián)表;
根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“自學(xué)不足”與“配有智能手機”有關(guān)?
附表及公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)的最大值是,求的值;
(3)已知,若存在兩個不同的正數(shù),當(dāng)函數(shù)的定義域為時,的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足:①a1=1;②所有項an∈N*;③1=a1<a2<…<an<an+1<….設(shè)集合Am={n|an≤m,m∈N*),將集合Am中的元素的最大值記為bm,即bm是數(shù)列{an}中滿足不等式an≤m的所有項的項數(shù)的最大值.我們稱數(shù)列{bn}為數(shù)列{an}的伴隨數(shù)列.
例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(I)若數(shù)列{an}的伴隨數(shù)列為1,1,2,2,2,3,3,3,3……,請寫出數(shù)列{an};
(II)設(shè)an=4n-1,求數(shù)列{an}的伴隨數(shù)列{bn}的前50項之和;
(III)若數(shù)列{an}的前n項和(其中c為常數(shù)),求數(shù)列{an}的伴隨數(shù)列{bm}的前m項和Tm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com