精英家教網 > 高中數學 > 題目詳情

【題目】已知A、B、C為△ABC的三個內角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

【答案】
(1)解:在△ABC中,∵cosBcosC﹣sinBsinC=

∴cos(B+C)= ,

又∵0<B+C<π,

∴B+C= ,

∵A+B+C=π,

∴A= ;


(2)解:由余弦定理a2=b2+c2﹣2bccosA,

得(2 2=(b+c)2﹣2bc﹣2bccos ,

把b+c=4代入得:12=16﹣2bc+bc,

整理得:bc=4,

則△ABC的面積S= bcsinA= ×4× =


【解析】(1)已知等式左邊利用兩角和與差的余弦函數公式化簡,求出cos(B+C)的值,確定出B+C的度數,即可求出A的度數;(2)利用余弦定理列出關系式,再利用完全平方公式變形,將a與b+c的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

以直角坐標系的原點為極點, 軸的正半軸為極軸建立坐標系,已知點的直角坐標為,若直線的極坐標方程為.曲線的參數方程是為參數).

(1)求直線和曲線的普通方程;

(2)設直線和曲線交于兩點,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若,求函數的極值;

(2)若函數有兩個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在△ABC中,點M是BC的中點,點N在AC上,且AN=3NC,AM與BN相交于點P,設 = , = ,用 、 表示

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動點P與雙曲線 =1的兩個焦點F1 , F2所連線段的和為6 ,
(1)求動點P的軌跡方程;
(2)若 =0,求點P的坐標;
(3)求角∠F1PF2余弦值的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知不等式ax2+bx+c>0的解集為{x|﹣ <x<2},則cx2+bx+a<0的解集為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設Sn為正項數列{an}的前n項和,a1=2,Sn+1(Sn+1﹣2Sn+1)=3Sn(Sn+1),則a100等于(
A.2×398
B.4×398
C.2×399
D.4×399

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解學生遵守《中華人民共和國交通安全法》的情況,調查部門在某學校進行了如下的隨機調查:向被調查者提出兩個問題:(1)你的學號是奇數嗎?(2)在過路口的時候你是否闖過紅燈?要求被調查者背對調查人拋擲一枚硬幣,如果出現正面,就回答第(1)個問題;否則就回答第(2)個問題.被調查者不必告訴調查人員自己回答的是哪一個問題,只需要回答“是”或“不是”,因為只有被調查本人知道回答了哪個問題,所以都如實做了回答.如果被調查的600人(學號從1到600)中有180人回答了“是”,由此可以估計在這600人中闖過紅燈的人數是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖在四面體OABC中,OA,OB,OC兩兩垂直,且OB=OC=3,OA=4,給出如下判斷: ①存在點D(O點除外),使得四面體DABC有三個面是直角三角形;
②存在點D,使得點O在四面體DABC外接球的球面上;
③存在唯一的點D使得OD⊥平面ABC;
④存在點D,使得四面體DABC是正棱錐;
⑤存在無數個點D,使得AD與BC垂直且相等.
其中正確命題的序號是(把你認為正確命題的序號填上).

查看答案和解析>>

同步練習冊答案