2.在銳角△ABC中,已知BC=1,B=2A,則AC的取值范圍是( 。
A.$({0,\sqrt{2}})$B.$({0,\sqrt{3}})$C.$({\sqrt{2},\sqrt{3}})$D.$({\sqrt{3},2})$

分析 根據(jù)正弦定理和B=2A及二倍角的正弦公式化簡得到AC=2cosA,要求AC的范圍,只需找出2cosA的范圍即可,根據(jù)銳角△ABC和B=2A求出A的范圍,然后根據(jù)余弦函數(shù)的增減性得到cosA的范圍即可.

解答 解:∵△ABC是銳角三角形,C為銳角,
∴A+B≥$\frac{π}{2}$,由B=2A得到A+2A>$\frac{π}{2}$,且2A=B<$\frac{π}{2}$,
解得:$\frac{π}{6}$<A<$\frac{π}{4}$,
∴$\sqrt{2}$<2cosA<$\sqrt{3}$,
根據(jù)正弦定理$\frac{AC}{sinB}=\frac{BC}{sinA}$,B=2A,
得到$\frac{AC}{2sinAcosA}=\frac{1}{sinA}$,即AC=2cosA,
則AC的取值范圍為($\sqrt{2}$.$\sqrt{3}$).
故選:C.

點評 此題考查了正弦定理,以及二倍角的正弦公式化簡求值,本題的突破點是根據(jù)三角形為銳角三角形、內(nèi)角和定理及B=2A變換角得到角的范圍,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義域為R的奇函數(shù),當(dāng)x<0時,f(x)=(x+1)3ex+1-e.那么函數(shù)f(x)的極值點的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是某幾何體的三視圖,則該幾何體的體積是( 。
A.3B.$\frac{9}{2}$C.9D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$橢圓方程+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{\sqrt{3}}{2}$,P在橢圓上移動,△PF1F2面積最大值為$\sqrt{3}$(F1為左焦點,F(xiàn)2為右焦點)
(1)求橢圓方程;
(2)若A2(a,0),直線l過F1與橢圓交于M,N,求直線MN的方程,使△MA2N的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow{a}$=(1,a),$\overrightarrow$=(sinx,cosx).函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的圖象經(jīng)過點(-$\frac{π}{3}$,0).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
(1)兩條平行線與同一平面所成角相等;
(2)與同一平面所成角相等的兩條直線平行;
(3)一條直線與兩個平行平面所成角相等;
(4)一條直線與兩個平面所成角相等,這兩個平面平行.
其中正確的命題是(1)(3).(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{a}$=(x,-2x),$\overrightarrow$=(x-1,3)且$\overrightarrow{a}$∥$\overrightarrow$,則x等于( 。
A.-$\frac{1}{2}$B.0C.-$\frac{1}{2}$或0D.0或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.Sn為{an}前n項和對n∈N*都有Sn=1-an,若bn=log2an,$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<m$恒成立,則m的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中真命題是( 。
A.若z1+z2=0,則z1,z2共軛B.若z1+z2=0,則${z_2},\overline{z_1}$共軛
C.若z1-z2=0,則z1,z2共軛D.若z1-z2=0,則${z_2},\overline{z_1}$共軛

查看答案和解析>>

同步練習(xí)冊答案