如圖,設(shè)有雙曲線,F1,F2是其兩個(gè)焦點(diǎn),點(diǎn)M在雙曲線上.
(1)若∠F1MF2=90°,求△F1MF2的面積;
(2)若∠F1MF2=60°,△F1MF2的面積是多少?若∠F1MF2=120°,△F1MF2的面積又是多少?
(3)觀察以上計(jì)算結(jié)果,你能看出隨∠F1MF2的變化,△F1MF2的面積將怎樣變化嗎?試證明你的結(jié)論.
(1) ; (2) , ; (3) θ增大時(shí)面積變小,證明過(guò)程見解析.
解析試題分析:(1) 設(shè),, 直角三角形△F1MF2中,利用雙曲線定義得,平方得,求得面積;(2) △F1MF2 中由余弦定理可得,|MF1|·|MF2|,由面積公式可得面積;(3) 由雙曲線定義與余弦定理,可得面積與θ的關(guān)系,所以θ增大時(shí)面積變小.
解:(1)由雙曲線方程知a=2,b=3,,
設(shè), ().
由雙曲線定義,有,兩邊平方得,
,
即,
也即,求得. 4分
(2)若∠F1MF2=60°,在△MF1F2中,
由余弦定理得,
,所以.
求得.
同理可求得若∠F1MF2=120°, . 8分
(3)由以上結(jié)果猜想,隨著∠F1MF2的增大,△F1MF2的面積將減小.
證明如下:
令∠F1MF2=θ,則.
由雙曲線定義及余弦定理,有
②-①得,
所以,
因?yàn)?<θ<π,,
在內(nèi),是增函數(shù),
因此當(dāng)θ增大時(shí), 將減。 12分
考點(diǎn):雙曲線的定義,余弦定理,三角形面積公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點(diǎn)M,N滿足,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分14分)如圖在平面直角坐標(biāo)系中,分別是橢圓的左右焦點(diǎn),頂點(diǎn)的坐標(biāo)是,連接并延長(zhǎng)交橢圓于點(diǎn),過(guò)點(diǎn)作軸的垂線交橢圓于另一點(diǎn),連接.
(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點(diǎn)為,其中的離心率為.
(1)求的值;
(2)過(guò)點(diǎn)的直線與分別交于(均異于點(diǎn)),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,,,的面積為.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過(guò)不同的焦點(diǎn),求圓的半徑..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知P是圓上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)時(shí),在x軸上是否存在一定點(diǎn)E,使得對(duì)曲線C的任意一條過(guò)E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為.過(guò)點(diǎn)
作直線交拋物線與兩點(diǎn)(在第一象限內(nèi)).
(1)若與焦點(diǎn)重合,且.求直線的方程;
(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為.直線交軸于. 且.求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)、(,都在軸上方) ,且.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線C:離心率是,過(guò)點(diǎn),且右支上的弦過(guò)右焦點(diǎn).
(1)求雙曲線C的方程;
(2)求弦的中點(diǎn)的軌跡E的方程;
(3)是否存在以為直徑的圓過(guò)原點(diǎn)O?,若存在,求出直線的斜率k 的值.若不存在,則說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com