10.已知兩個球的表面積之比為1:9,則這兩個球的體積之比為( 。
A.1:3B.1:$\sqrt{3}$C.1:9D.1:27

分析 首先由表面積的比得到半徑的比,再由體積比是半徑比的立方得到所求.

解答 解:因為兩個球的表面積之比是1:9,所以兩個球的半徑之比是1:3,
所以兩個球的體積之比1:27.
故選:D.

點評 本題考查了球的表面積、體積與半徑的關(guān)系;兩個球的表面積之比為半徑比的平方,體積之比是半徑比的立方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=$\left\{\begin{array}{l}{lnx,(0<x≤1)}\\{f(x-1)+1,(1<x≤3)}\end{array}\right.$,則f(2+$\frac{1}{e}$)=( 。
A.0B.1C.ln(1+$\frac{1}{e}$)+1D.ln(2+$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知不等式2xy≤ax2+y2,若對任意x∈[2,4]且y∈[1,6],該不等式恒成立,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)傾斜角為60°的直線l過點(1,0)且與圓C:x2+y2-4x=0相交,則圓C的半徑為2;圓心到直線l的距離是$\frac{{\sqrt{3}}}{2}$;直線l被圓截得的弦長為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果兩組數(shù)x1,x2,…,xn和y1,y2,…,yn的平均數(shù)分別為$\overline{x}$和$\overline{y}$,標(biāo)準(zhǔn)差分別為s1和s2,那么合為一組數(shù)x1,x2,…,xn,y1,y2,…,yn后的平均數(shù)和標(biāo)準(zhǔn)差分別是( 。
A.$\overline{x}$+$\overline{y}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$B.$\overline{x}$+$\overline{y}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$
C.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{{{S}_{1}}^{2}+{{S}_{2}}^{2}}{2}$D.$\frac{\overline{x}+\overline{y}}{2}$,$\frac{\sqrt{{{S}_{1}}^{2}+{{S}_{2}}^{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=2ex+$\frac{1}{2}a{x^2}$+ax+1有兩個極值,則實數(shù)a的取值范圍為a<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.3e,π3,3π,e3這四個數(shù)中最大的數(shù)是3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知幾何體O-ABCD的底面ABCD是邊長為$\sqrt{3}$的正的方形,且該幾何體體積的最大值為$\frac{{3\sqrt{2}}}{2}$,則該幾何體外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知橢圓$\frac{x^2}{4}$+y2=1上一點P在x軸上的射影恰好是右焦點F2,則點P到左焦點F1的距離為$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案