9.用根式的形式表示下列各式(a>0)
(1)a${\;}^{\frac{1}{2}}$;(2)a${\;}^{\frac{1}{5}}$;(3)a${\;}^{\frac{3}{4}}$;(4)a${\;}^{\frac{7}{5}}$;(5)a${\;}^{-\frac{2}{3}}$;(6)a${\;}^{-\frac{3}{2}}$.

分析 根據(jù)根式和分式指數(shù)的轉(zhuǎn)化關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

解答 解:(1)a${\;}^{\frac{1}{2}}$=$\sqrt{a}$;(2)a${\;}^{\frac{1}{5}}$=$\root{5}{a}$;(3)a${\;}^{\frac{3}{4}}$=$\root{4}{{a}^{3}}$;(4)a${\;}^{\frac{7}{5}}$=$\root{5}{{a}^{7}}$=a$\root{5}{{a}^{2}}$;(5)a${\;}^{-\frac{2}{3}}$=$\frac{1}{\root{3}{{a}^{2}}}$=$\frac{\root{3}{a}}{a}$;(6)a${\;}^{-\frac{3}{2}}$=$\frac{1}{\sqrt{{a}^{3}}}$=$\frac{1}{a\sqrt{a}}$=$\frac{\sqrt{a}}{{a}^{2}}$

點(diǎn)評(píng) 本題主要考查根式和分式指數(shù)冪的化簡(jiǎn),根據(jù)根式和指數(shù)冪的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若動(dòng)直線x=a與函數(shù)f(x)=sinx和g(x)=2cos2x-1的圖象分別交于M,N兩點(diǎn),則|MN|的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在底面為菱形的四棱錐P-ABCD中,PA⊥平面ABCD,E為PD的中點(diǎn),AB=2,∠ABC=$\frac{π}{3}$.
(1)求證:PB∥平面AEC;
(2)若三棱錐P-AEC的體積為1,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)=$\frac{x^2}{{1+{x^2}}}$,則f($\frac{1}{2016}$)+f($\frac{1}{2015}$)+…+f(1)+f(2)+…+f(2016)=(  )
A.4031B.$\frac{4031}{2}$C.4032D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)x、y為實(shí)數(shù).且xy=3,求x$\sqrt{\frac{y}{x}}$$+y\sqrt{\frac{x}{y}}$的值±2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{2\sqrt{5}}{5}$,直線x+2y+2=0與橢圓交于P,Q兩點(diǎn),且以PQ為直徑的圓過(guò)M(2,0),求這個(gè)橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=(x2-ax+1)ex(其中e為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)f(x)=xlnx-x2+$\frac{f(x)}{e^x}$,若a<$\frac{3}{2}$,求f(x)在區(qū)間[1,e]上的最大值;
(2)定義:若函數(shù)G(x)在區(qū)間[s,t](s<t)上的取值范圍為[s,t],則稱區(qū)間[s,t]為函數(shù)G(x)的“域同區(qū)間”,若a=2,求函數(shù)f (x)在(1,+∞)上所有符合條件的“域同區(qū)間”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與直線y=-2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[${\frac{π}{6}$,$\frac{π}{2}}$],求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)為Mf(x),定義為Mf(x)=f(x+1)-f(x),某公司每月最多生產(chǎn)100臺(tái)報(bào)警系統(tǒng)裝置.生產(chǎn)x臺(tái)的收入函數(shù)為R(x)=3000x-20x2(單位元),其成本函數(shù)為C(x)=600x+2000(單位元),利潤(rùn)等于收入與成本之差.
①求出利潤(rùn)函數(shù)p(x)及其邊際利潤(rùn)函數(shù)Mp(x)
②求出的利潤(rùn)函數(shù)p(x)及其邊際利潤(rùn)函數(shù)Mp(x)是否具有相同的最大值;
③你認(rèn)為本題中邊際利潤(rùn)函數(shù)Mp(x)最大值的實(shí)際意義.

查看答案和解析>>

同步練習(xí)冊(cè)答案