分析 (1)利用平面向量共線的性質(zhì)可得$({cosα-\frac{{\sqrt{2}}}{3}})×1-({-1})×sinα=0$,整理即可得解.
(2)由(1)利用二倍角的正弦函數(shù)公式可求$sin2α=-\frac{7}{9}$,進(jìn)而可得${({sinα-cosα})^2}=1-sin2α=\frac{16}{9}$,結(jié)合范圍$a∈[{-\frac{π}{2},0}]$,可求sinα-cosα的值,即可得解.
解答 解:(1)∵m與n為共線向量,向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinx,1),
∴$({cosα-\frac{{\sqrt{2}}}{3}})×1-({-1})×sinα=0$,
即$sinα+cosα=\frac{{\sqrt{2}}}{3}$;
(2)∵$1+sin2α={({sinα+cosα})^2}=\frac{2}{9}$,
∴$sin2α=-\frac{7}{9}$,
∴${({sinα-cosα})^2}=1-sin2α=\frac{16}{9}$,
又∵$a∈[{-\frac{π}{2},0}]$,
∴sinα-cosα<0,
∴sinα-cosα=-$\frac{4}{3}$,
∴$\frac{sin2α}{sinα-cosα}$=$\frac{7}{12}$.
點(diǎn)評 本題主要考查了平面向量共線的性質(zhì),二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$ | B. | $f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$ | C. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$ | D. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 211 | B. | 215 | C. | 220 | D. | 222 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | $(-∞,\frac{1}{2})$ | C. | $(\frac{1}{2},2)$ | D. | $(0,\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com