【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號三次,其規(guī)則是依次裝有個幸運號、個吉祥號的一個搖號機,裝有個幸運號、個吉祥號的二號搖號機,裝有個幸運號、個吉祥號的三號搖號機各搖號一次,其優(yōu)惠情況為:若搖出個幸運號則打折,若搖出個幸運號則打折;若搖出個幸運號則打折;若沒有搖出幸運號則不打折.

(1)若某型號的車正好萬元,兩個顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

(2)若你評優(yōu)看中一款價格為萬的便型轎車,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.

【答案】(1)(2)選擇第二種方案根劃算

【解析】試題分析:(1)根據(jù)條件可得若選擇方案二優(yōu)惠,即至少有一次摸出的是幸運球,其對立事件是三次都沒有摸出幸運球,其概率為 ,那么兩個人至少有一個人選擇方案二優(yōu)惠的概率為;(2)選擇方案一的價格為 (萬元),選擇方案二,先列出付款金額的分布列,求的期望,然后再比較.

試題解析:(1)選擇方案二方案一更優(yōu)惠,則需要至少摸出一個幸運球,設顧客不打折即三次沒摸出幸運球為事件,則,故所求概率

(2)若選擇方案一,則需付款(萬元).

若選擇方案二,設付款金額為萬元,則可能的取值為,

,

,

的分布列為

6

7

8

10

所以(萬元)(萬元),

所以選擇第二種方案根劃算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】閱讀右面的程序框圖,運行相應的程序,若輸入N的值為24,則輸出N的值為(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個三位自然數(shù)的百位,十位,個位上的數(shù)字依次為,當且僅當時稱為凹數(shù).若,且互不相同,任取一個三位數(shù),則它為凹數(shù)的概率是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.

(1)求線段AB的中點M的軌跡C的方程;

(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;

(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎,則該代表中獎;若電腦顯示謝謝,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0<a<b,且a+b=1,則下列不等式中正確的是(
A.log2a>0
B.2ab
C.log2a+log2b<﹣2
D.2 +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶假期是實施免收小型客車高速通行費的重大節(jié)假日,有一個群名為天狼星的自駕游車隊,該車隊是由31輛身長約為(以計算)的同一車型組成,行程中經(jīng)過一個長為2725的隧道(通過隧道的車速不超過),勻速通過該隧道,設車隊的速度為,根據(jù)安全和車流的需要,,相鄰兩車之間保持的距離;,相鄰兩車之間保持的距離自第一輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間

(1)將表示成為的函數(shù);

(2)求該車隊通過隧道時間的最小值及此時車隊的速度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校某次N名學生的學科能力測評成績(滿分120分)的頻率分布直方圖如下,已知分數(shù)在100﹣110的學生數(shù)有21人
(1)求總?cè)藬?shù)N和分數(shù)在110﹣115分的人數(shù)n.;
(2)現(xiàn)準備從分數(shù)在110﹣115的n名學生(女生占 )中選3位分配給A老師進行指導,設隨機變量ξ表示選出的3位學生中女生的人數(shù),求ξ的分布列與數(shù)學期望Eξ;
(3)為了分析某個學生的學習狀態(tài),對其下一階段的學習提供指導建議,對他前7次考試的數(shù)學成績x、物理成績y進行分析,該生7次考試成績?nèi)绫?

數(shù)學(x)

88

83

117

92

108

100

112

物理(y)

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學成績x是線性相關的,求出y關于x的線性回歸方程 = x+ .若該生的數(shù)學成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸方程 = x+ 的斜率和截距的最小二乘估計分別為 = ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)求的極值;

(2) 函數(shù)有兩個極值點,,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案