12.如圖1,在邊長為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點,E為AD的中點.將△BCD與△AEF分別沿CD,EF同側(cè)折起,使得二面角A-EF-D與二面角B-CD-E的大小都等于90°,得到如圖2所示的多面體.

(1)在多面體中,求證:A,B,D,E四點共同面;
(2)求多面體的體積.

分析 (1)推導(dǎo)出AE⊥平面DEFC,BD⊥平面DEFC,從而AE∥BD,由此能證明A,B,D,E四點共同面.
(2)求出AE是四棱錐A-CDEF的高,點A到平面BCD的距離等于點E到平面BCD的距離,多面體的體積V=VA-CDEF+VA-BCD,由此能求出結(jié)果.

解答 證明:(1)因為二面角A-EF-D的大小等于90°,
所以平面AEF⊥平面DEFC,
又AE⊥EF,AE?平面AEF,平面AEF∩平面DEFC=EF,
所以AE⊥平面DEFC,
同理,可得BD⊥平面DEFC,
所以AE∥BD,故A,B,D,E四點共同面.
解:(2)因為AE⊥平面DEFC,BD⊥平面DEFC,EF∥CD,AE∥BD,DE⊥CD,
所以AE是四棱錐A-CDEF的高,點A到平面BCD的距離等于點E到平面BCD,
又$AE=DE=1,CD=2\sqrt{3}$,$EF=\sqrt{3}$,
所以$V={V_{A-CDEF}}+{V_{A-BCD}}=\frac{1}{3}{S_{梯形CDEF}}•DE+\frac{1}{3}{S_{△BCD}}•DE=\frac{{7\sqrt{3}}}{6}$.

點評 本題考查四點共面的證明,考查多面體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等比數(shù)列{an}滿足a1=$\frac{1}{2},{a_2}{a_8}=2{a_5}$+3,則a9=( 。
A.$-\frac{1}{2}$B.$\frac{9}{8}$C.648D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,若輸入m=168,n=72,則輸出m的值為( 。
A.72B.24C.12D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx+ax+b在(1,f(1))處的切線為2x-2y-1=0.
(1)求f(x)的單調(diào)區(qū)間與最小值;
(2)求證:${e^x}+lnx>cosx+\frac{sinx-1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知2a+2b=2c,則a+b-2c的最大值等于( 。
A.-2B.-1C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在面積為1的正方形ABCD內(nèi)部隨機取一點p,則△PAB的面積大于等于$\frac{1}{3}$的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知3cos2θ=tanθ+3,且θ≠kπ(k∈Z),則sin[2(π-θ)]等于( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)m=4-xi,n=3+2i,若復(fù)數(shù)$\frac{n}{m}$∈R,則實數(shù)x的值為( 。
A.-6B.6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,并且b=2
(1)若角A,B,C成等差數(shù)列,求△ABC外接圓的半徑;
(2)若三邊a,b,c成等差數(shù)列,求△ABC內(nèi)切圓半徑的最大值.

查看答案和解析>>

同步練習(xí)冊答案