【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如表數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是的強(qiáng)化訓(xùn)練次數(shù)(保留整數(shù));
(2)若用()表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(保留整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
, ,樣本數(shù)據(jù), ,…, 的標(biāo)準(zhǔn)差為
【答案】(1)答案見(jiàn)解析;(2)這個(gè)班的強(qiáng)化訓(xùn)練有效.
【解析】試題分析:(1)先由表格中的數(shù)據(jù)算出公式所需數(shù)據(jù),利用公式求出, ,可得回歸方程,將代入所求回歸方程即可預(yù)測(cè)答題正確率是的強(qiáng)化訓(xùn)練次數(shù);(2)計(jì)算出這次統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”的平均值,由平均數(shù)可得“強(qiáng)化均值”的方差,然后看標(biāo)準(zhǔn)差是否在區(qū)間內(nèi)即可得結(jié)果.
試題解析:(1)由所給數(shù)據(jù)計(jì)算得: , , , ,
, ,
所求回歸直線方程是,
由,得預(yù)測(cè)答題正確率是100%的強(qiáng)化訓(xùn)練次數(shù)為7次.
(2)經(jīng)計(jì)算知,這四組數(shù)據(jù)的“強(qiáng)化均值”分別為5,6,8,9,平均數(shù)是7,
“強(qiáng)化均值”的標(biāo)準(zhǔn)差是,
所以這個(gè)班的強(qiáng)化訓(xùn)練有效.
【方法點(diǎn)晴】本題主要考查線性回歸方程及其應(yīng)用,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫(huà)出散點(diǎn)圖,確定兩個(gè)變量具有線性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫(xiě)出回歸直線方程為; 回歸直線過(guò)樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 為的中點(diǎn).
(1)求證:平面平面;
(2)問(wèn)在棱上是否存在點(diǎn),使平面,若存在,請(qǐng)求出二面角的余弦值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信是當(dāng)前主要的社交應(yīng)用之一,有著幾億用戶,覆蓋范圍廣,及時(shí)快捷,作為移動(dòng)支付的重要形式,微信支付成為人們支付的重要方式和手段。某公司為了解人們對(duì)“微信支付”認(rèn)可度,對(duì)年齡段的人群隨機(jī)抽取人進(jìn)行了一次“你是否喜歡微信支付”的問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組號(hào) | 分組 | 喜歡微信支付的人數(shù) | 喜歡微信支付的人數(shù) 占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
第六組 |
(1)補(bǔ)全頻率分布直方圖,并求, , 的值;
(2)在第四、五、六組“喜歡微信支付”的人中,用分層抽樣的方法抽取人參加“微信支付日鼓勵(lì)金”活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù);
(3)在(2)中抽取的人中隨機(jī)選派人做采訪嘉賓,求所選派的人沒(méi)有第四組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過(guò)地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過(guò)站的地鐵票價(jià)如下表:
乘坐站數(shù) | |||
票價(jià)(元) |
現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過(guò)站.甲、乙乘坐不超過(guò)站的概率分別為, ;甲、乙乘坐超過(guò)站的概率分別為, .
(1)求甲、乙兩人付費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐廳通過(guò)查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬(wàn)人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù) (萬(wàn)人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知購(gòu)買(mǎi)原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,
投入使用的每袋原材料相應(yīng)的銷(xiāo)售收入為700元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有15萬(wàn)人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買(mǎi)多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷(xiāo)售收入原材料費(fèi)用).
參考公式: , .
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室,在室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地.當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí),蔬菜的種植面積最大?最大種植面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在數(shù)列中, , , .
(1)證明數(shù)列是等差數(shù)列,并求的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018屆北京市海淀區(qū)】如圖,三棱柱側(cè)面底面,
, 分別為棱的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求三棱柱的體積;
(Ⅲ)在直線上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com