A. | (8,0) | B. | (4,0) | C. | (16,0) | D. | (6,0) |
分析 設(shè)直線l:x=my+b,代入拋物線y2=16x,利用韋達(dá)定理及向量數(shù)量積公式即可得到結(jié)論.
解答 解:設(shè)直線l:x=my+b,(b≠0),代入拋物線y2=16x,可得y2-16my-16b=0.
設(shè)A(x1,y1),B(x2,y2),則y1+y2=16m,y1y2=-16b,
∴x1x2=(my1+b)(my2+b)=b2,
∵OA⊥OB,∴x1x2+y1y2=0,
可得b2-16b=0,
∵b≠0,∴b=16,∴直線l:x=my+16,
∴直線l過定點(16,0).
故選:C.
點評 本題考查直線與拋物線的位置關(guān)系,考查向量知識的運用,正確運用韋達(dá)定理是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)g(2015)<g(2017) | B. | f(2)g(2015)>g(2017) | C. | g(2015)<f(2)g(2017) | D. | g(2015)>f(2)g(2017) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=xcosx | B. | y=cosx+$\frac{cos2x}{2}$+$\frac{cos3x}{3}$ | ||
C. | y=xsinx | D. | y=sinx+$\frac{sin2x}{2}$+$\frac{sin3x}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\frac{{4\sqrt{5}}}{5}$ | D. | $\frac{{8\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com