已知等差數(shù)列{an}中,公差d=2,S3=-24,則其前n項和Sn取最小值時n的值為
 
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得3a1+
3×2
2
×2
=-24,解得a1=-10,從而Sn=-10n+
n(n-1)
2
×2
=n2-11n=(n-
11
2
2-
121
4
,由此能求出結(jié)果.
解答: 解:∵等差數(shù)列{an}中,公差d=2,S3=-24,
∴3a1+
3×2
2
×2
=-24,解得a1=-10,
∴Sn=-10n+
n(n-1)
2
×2

=n2-11n=(n-
11
2
2-
121
4
,
∴n=5或n=6時,
Sn取最小值S5=S6=
1
4
-
121
4
=-30.
故答案為:5或6.
點評:本題考查等差數(shù)列前n項和Sn取最小值時n的值的求法,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
4
=1上一點到橢圓兩焦點的距離之和為4
2

(Ⅰ)求a的值及橢圓的離心率;
(Ⅱ)順次連結(jié)橢圓的頂點得到菱形A1B1A2B2,求該菱形的內(nèi)切圓方程;
(Ⅲ)直線l與(Ⅱ)中的圓相切并交橢圓于A,B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=x2-2x-1},B={x|x=-y2+2y+5},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三個是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點(1,0)對稱;
④已知函數(shù)f(x)=
3x-2,x≤2
log3(x-1),x>2
,則方程f(x)=
1
2
有2個實數(shù)根;
以上命題是真命題的是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+(a+1)x+a,若函數(shù)f(x)在區(qū)間(1,3)內(nèi)有零點,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=1,BC=2,沿著對角線AC將△ACD折起,得到四面體D-ABC,在四面體D-ABC中,給出下列命題:

①若二面角D-AC-B的大小為90°,則點D在平面ABC的射影一定在棱AC上;
②無論二面角D-AC-B的大小如何,若在棱AC上任取一點M,則BM+DM的最小值為
4
5
5
;
③無論二面角D-AC-B的大小如何,該四面體D-ABC的外接球半徑不變;
④無論二面角D-AC-B的大小如何,若點O為底面ABC內(nèi)部一點,且
OA
+2
OB
+3
OC
=0,則四面體D-AOB與四面體D-BOC的體積之比為3:1.
其中你認(rèn)為正確的所有命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,|φ|<π)的一段圖象如圖所示,則函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一座20m高的觀測臺測得對面一水塔塔頂?shù)难鼋菫?0°,塔底的俯角為45°,觀測臺底部與塔底在同一地平面,那么這座水塔的高度是
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是奇函數(shù),當(dāng)x<0時,f(x)=x2+ax,且f(3)=6,則a的值為( 。
A、5B、1C、-1D、-3

查看答案和解析>>

同步練習(xí)冊答案